Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-3\right)^2=16\)
=> \(2x-3=4\)
=> \(2x=4+3=7\)
=> \(x=\frac{7}{2}=3,5\)
b) \(\left(3x-2\right)^5=-243\)
=> \(3x-2=-3\)
=> \(3x=-3+2=-1\)
=> \(x=-\frac{1}{3}\)
a) (2x-3)^2=16
có 2 trường hợp:
_ 2x-3=-4 suy ra x=1/2
_ 2x-3=4 suy ra x=7/2
vậy x=1/2 hoặc x=7/2
b) tương tự câu a) nhưng chỉ có một trường hợp là 3x-2=-3 thôi. coi chừng bị lừa
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
Mình trình bày lại :
Ta có \(\frac{7x-8}{2x-3}=\frac{4\left(2x-3\right)-\frac{1}{2}\left(2x-3\right)+\frac{5}{2}}{2x-3}=\frac{7}{2}+\frac{5}{2\left(2x-3\right)}\)
Để A đạt giá trị lớn nhất thì 2x-3 đạt giá trị nhỏ nhất. Vì x là số tự nhiên nên 2x-3 là số tự nhiên
=> giá trị nhỏ nhất của 2x-3 là 1 , suy ra x = 2
Vậy Max A = 6 <=> x = 2
Bài 1 : Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x)(x + 1)
= x(x + 1)2
Bài : 2 :
a) Ta có : \(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\Rightarrow\frac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
=> x = 0
x - 2 = 0
x + 2 = 0
=> x = 0
x = 2
x = -2
a) \(\left(-4\right)^{\left(x+3\right)}=\left(-8\right)^{-2}\Rightarrow\left(-2\right)^{\left(2x+4\right)}=\left(-2\right)^{-6}\Rightarrow2x+4=-6\Rightarrow x=-5\)