Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
chuyển vế bình hết lên ko thì xset 2 th mỗi th chắc dài lê thê nên ngại làm
Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)
\(\Rightarrow C\le\frac{5}{3}\)
Dấu= khi \(x=-\frac{1}{7}\)
Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)
a: \(=2016+\dfrac{\dfrac{1}{5}+\dfrac{3}{8}+\dfrac{5}{11}}{-\dfrac{3}{10}+\dfrac{9}{10}-\dfrac{15}{22}}=2016+\dfrac{453}{440}:\dfrac{-9}{110}\)
\(=2016-\dfrac{151}{12}=\dfrac{24343}{12}\)
b: \(=\dfrac{1,3-13.2}{2.6}-\dfrac{5}{6}:2\)
\(=\dfrac{-119}{26}-\dfrac{5}{12}=\dfrac{-779}{156}\)
c: \(=15\left(-1-\dfrac{5}{7}-\dfrac{2}{7}\right)+\left(-105\right)\cdot\dfrac{1}{105}\)
\(=-30-1=-31\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+...+\frac{1+2+3+...+16}{16}\)
\(A=1+\frac{2\left(2+1\right):2}{2}+\frac{3\cdot\left(3+1\right):2}{3}+\frac{4\left(4+1\right):2}{4}+...+\frac{16\left(16+1\right):2}{16}\)
\(A=1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{2+3+4+5+...+17}{2}\)
\(A=\frac{152}{2}\)
\(A=76\)
a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)
\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)
\(x+\frac{1}{2}=x+x+3\\\)
\(x+\frac{1}{2}=x+\left(x+3\right)\)
\(\Rightarrow\frac{1}{2}=x+3\)
\(\Rightarrow x=\frac{1}{2}-3\)
\(\Rightarrow x=-\frac{5}{2}\)
Vậy \(x=-\frac{5}{2}\)
b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)
\(Ta\) \(có\)
\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)
\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)
\(3x+2=4x\)
\(3x+2=3x+x\)
\(\Rightarrow x=2\)
Vậy \(x=2\)