K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

10 tháng 10 2016

Cách 1. Sử dụng định lí Bezout : 

Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương

hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)

Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)

Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH

Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)

\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)

Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)

10 tháng 10 2016

Lại lỗi dấu ngoặc nhọn =.="

4 tháng 11 2017

Ta có: \(x^4:x^2=x^2\)

=> Đa thức thương của đa thức f(x) cho đa thức g(x) có dạng \(x^2+cx+d\)

=> \(f\left(x\right)=g\left(x\right).\left(x^2+cx+d\right)\)

=> \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\)

=> \(x^4-3x^3+3x^2+ax+b=x^4+x^3\left(c-3\right)+x^2\left(d-3c+4\right)+x\left(4c-3d\right)+4d\)

=> \(\left\{{}\begin{matrix}c-3=-3\\d-3c+4=3\\4c-3d=a\\b=4d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=0\\d=-1\\a=3\\b=-4\end{matrix}\right.\)

Vậy a = 3; b = -4

Ngoài cách đồng nhất hệ số như trên bạn có thể lam theo phương pháp giá trị riêng

4 tháng 11 2017

x-3x+3x+ax+b 4 3 2 x-3x+4 2 x-1 2 x-3x+4x 4 2 _________________________ - -x+ax+b 2 -x+3x-4 2 ______________ - (a-3)x+(b+4)

\(\Rightarrow\) Để \(f_{\left(x\right)}⋮g_{\left(x\right)}\)

\(\text{thì }\Rightarrow\left\{{}\begin{matrix}\left(a-3\right)x=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-3=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)

Vậy để \(f_{\left(x\right)}⋮g_{\left(x\right)}\) thì \(a=3;b=-4\)

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)