Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
Quy đồng lên rồi so sánh:
ta có:
Sắp xếp theo thứ tự tăng dần
\(\frac{5}{7};\frac{6}{8};\frac{7}{9};\frac{8}{10};\frac{9}{11}\)
GIẢM DẦN THÌ XẾP NGƯỢC LẠI LÀ ĐƯỢC RỒI
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
TL:
\(\frac{12}{100}\)= 0,12
\(\frac{5}{100}\)= 0,05
\(\frac{306}{1000}\)= 0,306
-HT-
\(a,\frac{7}{13};\frac{7}{12};\frac{7}{10};\frac{7}{8}\)
\(b,\frac{9}{40};\frac{1}{4};\frac{3}{10};\frac{3}{8}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
Ta có: `12 > 9 > 8 > 7`
`=> 12/8 > 9/8 > 8/8 > 7/8`
`=>` Phân số lớn nhất là `12/8`
`=> A.`
`2,`
So sánh \(\dfrac{3}{4}\text{ ; }\dfrac{9}{32}\)
\(\dfrac{3}{4}=\dfrac{3\times8}{4\times8}=\dfrac{24}{32}\)
Vì `24 > 9 `\(\Rightarrow\dfrac{24}{32}>\dfrac{9}{32}\) \(\Rightarrow\dfrac{3}{4}>\dfrac{9}{32}\)
\(\dfrac{9}{32}\text{;}\dfrac{3}{11}\)
\(\dfrac{9}{32}=\dfrac{9\times11}{32\times11}=\dfrac{99}{352}\)
\(\dfrac{3}{11}=\dfrac{3\times32}{11\times32}=\dfrac{96}{352}\)
Vì `99 > 96 \Rightarrow`\(\dfrac{99}{352}>\dfrac{96}{352}\Rightarrow\dfrac{9}{32}>\dfrac{3}{11}\)
Mà \(\dfrac{3}{11}< \dfrac{3}{4}\); \(\dfrac{9}{32}< \dfrac{3}{4}\)
`\Rightarrow`\(\dfrac{3}{4}>\dfrac{9}{32}>\dfrac{3}{11}\)
So sánh \(\dfrac{5}{7};\dfrac{3}{4}\)
\(\dfrac{5}{7}=\dfrac{5\times4}{7\times4}=\dfrac{20}{28}\)
\(\dfrac{3}{4}=\dfrac{3\times7}{4\times7}=\dfrac{21}{28}\)
Vì \(20< 21\Rightarrow\dfrac{20}{28}< \dfrac{21}{28}\Rightarrow\dfrac{5}{7}< \dfrac{3}{4}\)
So sánh \(\dfrac{5}{7};\dfrac{9}{32}\)
\(\dfrac{5}{7}=\dfrac{5\times32}{7\times32}=\dfrac{160}{224}\)
\(\dfrac{9}{32}=\dfrac{9\times7}{32\times7}=\dfrac{64}{224}\)
Vì \(160>64\Rightarrow\dfrac{160}{224}>\dfrac{64}{224}\Rightarrow\dfrac{5}{7}>\dfrac{9}{32}\)
`\Rightarrow` Thứ tự sắp xếp các phân số tăng dần là: \(\dfrac{3}{11};\dfrac{9}{32};\dfrac{5}{7};\dfrac{3}{4}\)
Bài 1 : A 12/8
Bài 2 : Theo thứ tự tăng dần là : 3/11, 9/32, 5/7, 3/4