Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là cạnh hình vuông lớn nhất
=> a là ƯCLN(52,36)
Ta có :
52=2^2.13
36=2^2.3^2
=> ƯCLN(52,36)=2^2=4
Vậy độ dài lớn nhất của cạnh hình vuông là 4m
Gọi cạnh hình vuông lớn nhất là a
Theo bài ra ta có :
52 chia hết cho a ; 36 chia hết cho a ; a là số lớn nhất
\(\Rightarrow\) a \(\in\) ƯCLN(52;36)
52 = 22 .13
36 = 22.32
=> ƯCLN(52;36) = 22 =4
Vậy cạnh hình vuông lớn nhất là 4m
Gọi x là hình vuông lớn nhất .
Theo đề bài ta có :
52 : x ; 36 : x (x là số lớn nhất )
\(\Rightarrow x\inƯCLN\left(52;36\right)\)
\(ƯCLN\left(52;36\right)=2^2=4\)
Vậy với cách chia có độ dài là 4 m là lớn nhất
Chúc bạn học tốt !!!
Bài giải
Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)
Theo đề bài, có: 52 \(⋮\)x ; 36 \(⋮\)x và x lớn nhất
Suy ra x \(\in\)ƯCLN (52; 36)
52 = 22.13
36 = 22.32
ƯCLN (52; 36) = 22 = 4
Suy ra x = 4 (m)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Với cách chia là mỗi hình vuông có cạnh 4 m
Lời giải:
Để chia đám đất thành hình vuông bằng nhau, mà đảm bảo cạnh hình vuông lớn nhất, thì độ dài cạnh hình vuông đó phải là ước chung của $52,36$
Ta có:
$52=2^2.13$
$36=2^2.3^2$
$\Rightarrow$ độ dài cạnh hình vuông lớn nhất là: $2^2=4$ (m)
Bài 1:
Nếu n = 2k (k \(\in\) N),ta có:
(n + 4)(n + 7) = (2k + 4)(2k + 7) = 2(k + 2)(2k + 7) ⋮ 2
Nếu n = 2k + 1 (k \(\in\) N),ta có:
(n + 4)(n + 7) = (2k + 5)(2k + 8) = (2k + 5).2(k + 4) ⋮ 2
Vậy (n + 4)(n + 7) là số chẵn
Bài 2:
Gọi độ dài lớn nhất của cạnh hình vuông là a
Ta có: 52 ⋮ a ; 36 ⋮ a
và a là lớn nhất
=>a \(\in\) ƯC(52,36)
52 = 22.13
36 = 22.32
ƯCLN(52,36) = 22 = 4
Vì a là lớn nhất a = 4
Vậy độ dài lớn nhất của cạnh hình vuông là 4m
Bài 1 : Gọi số tự nhiên cần tìm là : a ( a \(\in\) N* )
Theo đề ra , ta có :
\(a⋮8,a⋮10,a⋮15\Rightarrow a\in BC\left(8,10,15\right)\)
\(8=2^3\)
\(10=2.5\)
\(15=3.5\)
\(BCNN\left(8,10,15\right)=2^3.3.5=120\)
Mà : \(B\left(120\right)=\left\{0;120;...;1080;1200;1320;1440;1560;1680;1800;1920;...\right\}\)
\(\Rightarrow a\in\left\{1080;1200;1320;1440;1560;1680;1800;1920\right\}\)
Vậy ...
Bài 2 : Gọi độ dài của cạnh hình vuông là : a ( a \(\in\) N* )
Theo đề ra , ta có :
\(52⋮a,36⋮a\)
Mà : a lớn nhất
\(\Rightarrow a=ƯCLN\left(52,36\right)\)
\(52=2^2.13\)
\(36=2^2.3^2\)
\(ƯCLN\left(52,36\right)=2^2=4\)
Vậy chia 4 thì độ dài cạnh hình vuông là lớn nhất và bằng 4