Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=> \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)
=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.
b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)
=> Để giá trị phân thức A = 0 thì x = 3
Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé
a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)
b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)
\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)
\(\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=10x^2+7x-12\)
\(b,\frac{x-4}{x-2}+\frac{5x-8}{x-2}=\frac{x-4+5x-8}{x-2}=\frac{6\left(x-2\right)}{x-2}=6\)
\(c,\frac{x-9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x-9}{\left(x+3\right)\left(x-3\right)}-\frac{3}{x\left(x+3\right)}\)
\(=\frac{x^2-9x}{x\left(x+3\right)\left(x-3\right)}-\frac{3x-9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-9x-3x+9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-6x+9}{x\left(x+3\right)\left(x-3\right)}\)
\(=\frac{x-3}{x\left(x+3\right)}\)
CÂU 1 :
a, ( 5x-4 ) ( 2x + 3 )
= 10x + 15x -8x -12
= 17x - 12
b, \(\frac{x-4}{x-2}\)+ \(\frac{5x-8}{x-2}\)
= \(\frac{x-4+5x-8}{x-2}\)
= \(\frac{6x-12}{x-2}\)
= \(\frac{6\left(x-2\right)}{x-2}\)
= 6
c, \(\frac{x-9}{x^2-9}\)- \(\frac{3}{x^2+3x}\)
= \(\frac{x-9}{\left(x-3\right)\left(x+3\right)}\)- \(\frac{3}{x\left(x+3\right)}\)
= \(\frac{\left(x-9\right).x}{x\left(x-3\right).\left(x+3\right)}\)- \(\frac{3.\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x}{x\left(x-3\right)\left(x+3\right)}\)- \(\frac{3x-9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x-3x+9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-12x+9}{x\left(x-3\right)\left(x+3\right)}\)
Bài 1:
a. $3x^3-12x^2+12x=3x(x^2-4x+4)=3x(x-2)^2$
b. $x^2-25+4xy+4y^2=(x^2+4xy+4y^2)-25=(x+2y)^2-5^2=(x+2y-5)(x+2y+5)$
c. $4x^3-x=x(4x^2-1)=x[(2x)^2-1^2]=x(2x-1)(2x+1)$
d. $x^2-x+2y-4y^2=(x^2-4y^2)-(x-2y)=(x-2y)(x+2y)-(x-2y)=(x-2y)(x+2y+1)$
Bài 2:
a. $3x(x-1)+x-1=0$
$\Leftrightarrow (x-1)(3x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $3x+1=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-1}{3}$
b. $x(2x+1)-4x^2+1=0$
$\Leftrightarrow x(2x+1)-(4x^2-1)=0$
$\Leftrightarrow x(2x+1)-(2x-1)(2x+1)=0$
$\Leftrightarrow (2x+1)[x-(2x-1)]=0$
$\Leftrightarrow (2x+1)(-x+1)=0$
$\Leftrightarrow 2x+1=0$ hoặc $-x+1=0$
$\Leftrightarrow x=\frac{-1}{2}$ hoặc $x=1$
Bài 4:
a: D đối xứng M qua AB
=>AB là trung trực của DM
=>AB vuông góc DM tại I và I là trung điểm của DM
Xet tứ giác AEDI có
góc AED=góc AID=góc EAI=90 độ
=>AEDI là hình chữ nhật
b: Xét tứ giác ADBM có
I là trung điểm chung của AB và DM
DA=DB
=>ADBM là hình thoi
c: Xét tứ giác AMDC có
AM//DC
AM=DC
=>AMDC là hình bình hành
=>DM=AC
d: AIDE là hình vuông
=>AI=AE
=>AB=AC
\(a.xz+yz-5\left(x+y\right)=\left(x+y\right)z-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
Học tốt
a, xz + yz - 5(x + y)
<=> z(x + y) - 5(x + y)
<=> (z - 5).(x + y)
b, x2 - 3xy + 2y2
<=> x2 - xy - 2xy + 2y2
<=> x(x - y) - 2y(x - y)
<=> (x - 2y).(x - y)
\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)
Bài 1 :
\(Q=x^2-2x+114\)
\(Q=x^2-2\cdot x\cdot1+1^2+113\)
\(Q=\left(x-1\right)^2+113\ge113\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Qmin = 113 khi và chỉ khi x = 1
Bài 2:
a) \(x^2+4x-5x-20\)
\(=x\left(x+4\right)-5\left(x+4\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
b) \(x^3+2x^2-9x-18\)
\(=x^2\left(x+2\right)-9\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-9\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)