Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Vì ƯCLN ( a , b ) = 14 => a = 14x ; b = 14y
Mà a + b = 42
Thay a = 14x ; b = 14y vào a + b = 42 được
14x + 14y = 42
14 . ( x + y ) = 42
=> x + y = 3
=> ( x , y ) = ( 0 ; 3 ) ; ( 3 ; 0 ) ; ( 1 ; 2 ) ; ( 2 ; 1 )
=> ( a ; b ) = ( 0 ; 42 ) ; ( 42 ; 0 ) ; ( 14 ; 28 ) ; ( 28 ; 14 )
Vậy ( a ; b ) = ( 0 ; 42 ) ; ( 42 ; 0 ) ; ( 14 ; 28 ) ; ( 28 ; 14 )
Link đây nha bạn tham khảo thử
https://sachgiaibaitap.com/sach_giai/giai-sach-bai-tap-toan-lop-6-bai-17-uoc-chung-lon-nhat/
Học tốt nhé
Câu 6:
Gọi A là tập các số là bội của 3 trong khoảng từ 23 đến 82
=>A={24;27;30;...;81}
Số số hạng là (81-24):3+1=20(số)
Câu 8:
Gọi số học sinh là x
Theo đề, ta có: \(x\in BC\left(35;40\right)\)
mà 800<=x<=900
nên x=840
a+5 chia hết cho 11;13
=> a+5 thuộc BC(11;13) ; BCNN(11;13) = 143
=> a+5 = 143k=> a = 143k -5 ; với k thuộc N*
vì 99<a<1000=>99<143k-5<1000 =>0,72..<k< 7,02..
=>a nhỏ nhất ; khi k = 1
=>a =143 -5 = 138
Vậy a =138
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Bài 1:
Gọi hai số cần tìm là $a,b$
Gọi $d$ là ước chung lớn nhất của hai số trên.
Khi đó, đặt \(\left\{\begin{matrix} a=dm\\ b=dn\end{matrix}\right.\) với (m,n) nguyên tố cùng nhau.
\(\Rightarrow BCLN (a,b)=dmn\)
Vì \(BCLN (a,b)=6UCLN (a,b)\Rightarrow dmn=6d\)
\(\Leftrightarrow mn=6\)
Giả sử m>n. Khi đó: \((m,n)=(6, 1)\) hoặc \((m,n)=(3,2)\)
Mặt khác: \(a+b=30\Leftrightarrow dm+dn=30\Leftrightarrow d(m+n)=30\)
+) Nếu \((m,n)=(6,1)\Rightarrow d.7=30\Rightarrow d=\frac{30}{7}\not\in\mathbb{N}\) (loại)
+) Nếu \((m,n)=(3,2)\Rightarrow d.5=30\Rightarrow d=6\)
\(\Rightarrow a=18; b=12\)
Vậy hai số cần tìm là 18 và 12
Lời giải:
Gọi ƯCLN (a,b) là $d$ \(\Rightarrow \left\{\begin{matrix} a=dm\\ b=dn\end{matrix}\right.\) với \((m,n)\) nguyên tố cùng nhau.
Khi đó: BCLN (a,b) là: \(dmn\)
Theo bài ra ta có:
\(\left\{\begin{matrix} dm+2dn=48\\ d+3dmn=114\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} d(m+2n)=48(1)\\ d(1+3mn)=114(2)\end{matrix}\right.\)
Từ (2) : \(d(3mn+1)=114=2.3.19\) (*)
Nếu \(d\not\vdots 3\), kết hợp \(3mn+1\not\vdots 3\Rightarrow d(3mn+1)\not\vdots 3\Leftrightarrow 114\not\vdots 3\) (vô lý)
Do đó $d$ chia hết cho $3$ (**)
Mặt khác: Từ (1) suy ra (d) là ước của $48$ (***)
Từ (*); (**); (***) suy ra $d=3$ hoặc $d=6$
+) Nếu $d=3$, thay vào (2) suy ra \(3mn+1=38\rightarrow 3mn=37\not\vdots 3\) (vô lý)
+) Nếu \(d=6\Rightarrow \left\{\begin{matrix} m+2n=8\\ 3mn+1=19\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m+2n=8\\ mn=6\end{matrix}\right.\) suy ra $m$ chẵn.
Từ đây dễ dàng thấy (m,n)=(6;1) hoặc (2;3)
Kéo theo \((a,b)=(36,6);(12;18)\)