Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
a) | \(\frac{1}{2}\)x| = 3 - 2x
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-\left(3-2x\right)\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x+2x=3\\\frac{1}{2}x=-3+2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{1}{2}x-2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=3:\frac{5}{2}\\-\frac{3}{2}x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-3:\left(-\frac{3}{2}\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\)
b) |x - 1| = 3x + 2
\(\Rightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-\left(3x+2\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-3x=2+1\\x-1=-3x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-2x=3\\x+3x=-2+1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{-2}\\4x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{1}{4}\end{cases}}\)
c) | 5x | = x - 12
\(\Rightarrow\orbr{\begin{cases}5x=x-12\\5x=-\left(x-12\right)\end{cases}}\Rightarrow\orbr{\begin{cases}5x-x=-12\\5x=-x+12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=-12\\5x+x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
d) |7 - x| = 5x + 1
\(\Rightarrow\orbr{\begin{cases}7-x=5x+1\\7-x=-\left(5x+1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}7-1=5x+x\\7-x=-5x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6=6x\\7+1=-5x+x\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\8=-4x\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
e) |9 + x| = 2x
\(\Rightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}}\Rightarrow\orbr{\begin{cases}9=2x-x\\9=-2x-x\end{cases}}\Rightarrow\orbr{\begin{cases}9=x\\9=-3x\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-3\end{cases}}\)
Ủng hộ mk nha !!! ^_^
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
a) A=(5x+3)3
A=5x3+33
Một cách thôi nha 2 cách lòi ruột đấy :
\(A=\left(5x+3\right)^3\)
\(=\left(5x\right)^3+3.\left(5x\right)^2.3+3.5x.9+3^3\)
\(=125x^3+225x^2+135x+27\)
\(B=\left(8x-5\right)^3\)
\(=\left(8x\right)^3-3.\left(8x\right)^2.5+3.8x.5^2-5^3\)
\(=512x^3-960x^2+600x-125\)
\(C=\left(5x-1\right)\left(25x^2-5x+1\right)\)
Sai rồi nha bạn phải là : \(\left(5x-1\right)\left(25x^2+5x+1\right)\)
\(=\left(5x\right)^3-1^3\)
\(=125x^3-1\)
\(D=\left(x+3\right)\left(x^2-3x+1\right)\)
\(=x^3+3^3\)
\(=x^3+27\)