K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c

12 tháng 4 2018

Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)

\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)

\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)

3 tháng 11 2019

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

Xin phép được giải bài mà chính bản thân hỏi :v

Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\)          \(\left(k=11...1\right)\)(n chữ số 1)

                       \(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\)       (n chữ số 9)

                                                                                \(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\)   (n chữ số 0) (n chữ số b)

                                                                                \(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)

                                                                                \(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\)    (đpcm)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\\ =\dfrac{111...11\left(9a+b\right)}{111...11.10b}\)(có n chữ số 1 trong 111...11)

\(\dfrac{999...99a+111...11b}{111.110b}\\ =\dfrac{999...99a+a+111...11}{111.10b+c}=\dfrac{abbb...bb}{bbb...bc}=\dfrac{a}{c}\)(đpcm)

14 tháng 7 2015

 Dinh Nguyen Ha Linh bn vào câu hỏi của tôi rùi ấn sửa nội dung cho đúng đi nhé

7 tháng 9 2017

Ta có : \(\left(x-5\right)^4+\frac{14}{17}=\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\)

Vì : \(\left[\left(x-5\right)^2\right]^2\ge0\forall x\) 

Nên : \(\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\ge\frac{14}{17}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{14}{17}\) khi x = 5

b) Vì : \(\left(\frac{3}{7}-14x\right)^2\ge0\forall x\) 

Nên : \(\left(\frac{3}{7}-14x\right)^2-\frac{214}{979}\ge-\frac{214}{979}\forall x\)

Vậy GTNN của biểu thức là : \(-\frac{214}{979}\) khi \(\frac{3}{7}-14x=0\) \(\Rightarrow14x=\frac{3}{7}\) \(\Rightarrow x=\frac{3}{7}.\frac{1}{14}=\frac{3}{98}\)

14 tháng 1

Bài 3. 

\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)

Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)

Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)

Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).

Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)

\(\Rightarrow c=\pm\dfrac{1}{6}\).

Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)

Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)

19 tháng 8 2017

\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)

\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)

Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)

27 tháng 8 2017

chị ơi toán lớp 7 hả