K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

5 tháng 6 2017

nhiều thế

27 tháng 9 2023

a) x⁴ + 2x² + 1

= (x²)² + 2.x².1 + 1²

= (x² + 1)²

b) 4x² - 12xy + 9y²

= (2x)² - 2.2x.3y + (3y)²

= (2x - 3y)²

c) -x² - 2xy - y²

= -(x² + 2xy + y²)

= -(x + y)²

d) (x + y)² - 2(x + y) + 1

= (x + y)² - 2.(x + y).1 + 1²

= (x - y + 1)²

27 tháng 9 2023

e) x³ - 3x² + 3x - 1

= x³ - 3.x².1 + 3.x.1² - 1³

= (x - 1)³

g) x³ + 6x² + 12x + 8

= x³ + 3.x².2 + 3.x.2² + 2³

= (x + 2)³

h) x³ + 1 - x² - x

= (x³ + 1) - (x² + x)

= (x + 1)(x² - x + 1) - x(x + 1)

= (x + 1)(x² - x + 1 - x)

= (x + 1)(x² - 2x + 1)

= (x + 1)(x - 1)²

k) (x + y)³ - x³ - y³

= (x + y)³ - (x³ + y³)

= (x + y)³ - (x + y)(x² - xy + y²)

= (x + y)[(x + y)² - x² + xy - y²]

= (x + y)(x² + 2xy + y² - x² + xy - y²)

= (x + y).3xy

= 3xy(x + y)

13 tháng 1

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

13 tháng 1

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

28 tháng 6 2021

Chia nhỏ ra cậu ơi :v

Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((

28 tháng 6 2021

cảm ơn nhé

24 tháng 12 2018

Bài 2 : phân tích các đa thức sau thành nhân tử

a, x3 - 2x2 + x

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b, x2 - 2x - y2 + 1

\(=x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

24 tháng 12 2018

vt mũ hộ mk đuy bạn :

\(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x^2-x\right)\left(x-1\right)\)

\(b,x^2-2x-y^2+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1+y\right)\left(x-1-y\right)\)

17 tháng 12 2023

a) x³y + x - y - 1

= (x³y - y) + (x - 1)

= y(x³ - 1) + (x - 1)

= y(x - 1)(x² + x + 1) + (x - 1)

= (x - 1)[y(x² + x + 1) + 1]

= (x - 1)(x²y + xy + y + 1)

b) x²(x - 2) + 4(2 - x)

= x²(x - 2) - 4(x - 2)

= (x - 2)(x² - 4)

= (x - 2)(x - 2)(x + 2)

= (x - 2)²(x + 2)

c) x³ - x² - 20x

= x(x² - x - 20)

= x(x² + 4x - 5x - 20)

= x[(x² + 4x) - (5x + 20)]

= x[x(x + 4) - 5(x + 4)]

= x(x + 4)(x - 5)

d) (x² + 1)² - (x + 1)²

= (x² + 1 - x - 1)(x² + 1 + x + 1)

= (x² - x)(x² + x + 2)

= x(x - 1)(x² + x + 2)

17 tháng 12 2023

e) 6x² - 7x + 2

= 6x² - 3x - 4x + 2

= (6x² - 3x) - (4x - 2)

= 3x(2x - 1) - 2(2x - 1)

= (2x - 1)(3x - 2)

f) x⁴ + 8x² + 12

= x⁴ + 2x² + 6x² + 12

= (x⁴ + 2x²) + (6x² + 12)

= x²(x² + 2) + 6(x² + 2)

= (x² + 2)(x² + 6)

g) (x³ + x + 1)(x³ + x) - 2

Đặt u = x³ + x

x³ + x + 1 = u + 1

(u + 1).u - 2

= u² + u - 2

= u² - u + 2u - 2

= (u² - u) + (2u - 2)

= u(u - 1) + 2(u - 1)

= (u - 1)(u + 2)

= (x³ + x - 1)(x³ + x + 2)

= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)

= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]

= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]

= (x³ + x - 1)(x - 1)(x² - x + 2)

h) (x + 1)(x + 2)(x + 3)(x + 4) - 1

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1

= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)

Đặt u = x² + 5x + 4

u + 2 = x² + 5x + 6

(1) u.(u + 2) - 1

= u² + 2u - 1

= u² + 2u + 1 - 2

= (u² + 2u + 1) - 2

= (u + 1)² - 2

= (u + 1 + √2)(u + 1 - √2)

= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)

= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)

6 tháng 6 2017

a,\(x^3-7x+6\)

\(=x^3-2x^2+2x^2-4x-3x+6\)

\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)

\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)

\(=\left(x-2\right).\left(x^2+2x-3\right)\)

\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)

\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)

\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)

\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)

b,\(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)

\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)

\(=\left(x-8\right).\left(x^2-x-2\right)\)

\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)

\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)

\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)

\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)

c,\(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)

\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)

\(=\left(x-5\right).\left(x^2-x-6\right)\)

\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)

\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)

\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)

\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)

Chúc bạn học tốt!!!

6 tháng 6 2017

d,\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x^2-x+3\right)\)

e, \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)

\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)

Chúc bạn học tốt!!!

29 tháng 8 2021

\(g,x^4-16=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ i,-x^2+10x-25=-\left(x-5\right)^2\\ k,x^3+3x^2+3x+1-27z^3\\ =\left(x+1\right)^3-27z^3\\ =\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\\ =\left(x-3z+1\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\\ m,\left(x+y\right)^2-25\left(x+y\right)+24=\left(x+y-5\right)^2-1=\left(x+y-4\right)\left(x+y-6\right)\)

29 tháng 8 2021

g. x4 - 16

<=> x4 - 42

<=> (x2)2 - 42

<=> (x2 - 4)(x2 + 4)

i. -x2 + 10x - 25

<=> -(x2 - 10x + 25)

<=> -(x2 -10x + 52)

<=> -(x - 5)2

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)