K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Bài 2:đk x khác -1 đặt luôn x+1=y y khác 0

\(\Leftrightarrow k\left(y+1\right)-3k+3=y\Leftrightarrow\left(k-1\right)y-2k+3=0\) (*)

với k=1 => 0.y-2+3=1=0 vô nghiệm

với k khác 1 ta có \(y=\frac{2k-3}{k-1}\)

Đk x<0=> y<1

\(\frac{2k-3}{k-1}< 1\Leftrightarrow\frac{2k-3-k+1}{k-1}=\frac{k-2}{k-1}< 0\Rightarrow1< k< 2\)

Bài 3: ĐK x khác -1

\(4-t=\frac{2}{x+1}\Leftrightarrow\left(4-t\right)\left(x+1\right)=2\) (*)

Với t=4 có 0.(x+1)=2 => vô nghiệm

với t khác 4 => (x+1)=2/(4-t)=> x=2/(4-t)-1

nghiệm dương => \(\frac{2}{4-t}-1>0\Rightarrow\frac{2+t-4}{4-t}=\frac{t-2}{4-t}>0\Rightarrow2< t< 4\)

12 tháng 2 2017

Bổ xung: với bài này không ảnh hửng đến đáp số

Bài 2: cần giải thêm

\(\frac{2k-3}{k-1}\ne0\Rightarrow k\ne\frac{3}{2}\)

Bài 3 giải thêm

\(\frac{t-2}{4-t}\ne-1\)

25 tháng 2 2017

Bài 2: kết luận nhầm : \(1< k< 2\)

Bài 3:

\(\left\{\begin{matrix}x\ne1\\\left(4-t\right)\left(x+1\right)=2\Leftrightarrow4+4x-tx-t=2\end{matrix}\right.\)

\(\Leftrightarrow\left(4-t\right)x=t-2\)

\(\Leftrightarrow\left\{\begin{matrix}t=4\\0.x=2\rightarrow Vo.N_0\end{matrix}\right.\)

\(\left\{\begin{matrix}t\ne4\\x=\frac{t-2}{4-t}\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x>0\\\frac{t-2}{4-t}>0\end{matrix}\right.\)\(\Rightarrow2< t< 4\)

Kết luận: \(2< t< 4\)

25 tháng 2 2017

Bài 1+1

\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\Leftrightarrow k\left(x+2\right)-3\left(k-1\right)=\left(x+2\right)-1\) Đặt:\(\left\{\begin{matrix}x+2=y\\k-1=t\\x< 0\Rightarrow y< 2\end{matrix}\right.\)

\(\Leftrightarrow ky-y=3\left(k-1\right)-1\Leftrightarrow ty=3t-1\)(1)

\(\left\{\begin{matrix}t=0\Rightarrow k=1\\\left(1\right)\Leftrightarrow0.y=-1\Rightarrow voN_o\end{matrix}\right.\)

\(\left\{\begin{matrix}t\ne0\Rightarrow k\ne1\\y=\frac{3t-1}{t}\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}y< 2\\\frac{3t-1}{t}< 2\end{matrix}\right.\)\(\Leftrightarrow\frac{3t-1-2t}{t}< 0\) \(\Leftrightarrow\frac{t-1}{t}< 0\)\(\Leftrightarrow0< t< 1\) \(\Rightarrow-1< k< 0\)

Kết luận: \(-1< k< 0\)

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

24 tháng 1 2018

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

Bài 1: Cho phân thức A = \(\frac{x^2+6x+9}{x^2-9}\) a) Với giá trị nào của x thì giá trị của phân thức A xác định ? b) Rút gọn phân thức A c) Tính giá trị của biểu thức A tại x=9 Bài 7 : Tìm x a) \(x^2-6x+5=0\) c)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\) b) \(x\left(x+3\right)=\left(2x-1\right)\left(x+3\right)\) d)...
Đọc tiếp

Bài 1: Cho phân thức A = \(\frac{x^2+6x+9}{x^2-9}\)

a) Với giá trị nào của x thì giá trị của phân thức A xác định ?

b) Rút gọn phân thức A

c) Tính giá trị của biểu thức A tại x=9

Bài 7 : Tìm x

a) \(x^2-6x+5=0\) c)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

b) \(x\left(x+3\right)=\left(2x-1\right)\left(x+3\right)\) d) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

e)\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\) f) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\) h) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

Bài 3 : Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn

(2m - 1 )x + 3 - m =0

Bài 4 :Tìm giá trị của k sao cho:

a/ Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b) Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c/Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

d/ Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2

Bài 10 :Tìm các giá trị của m, a để các cặp phương trình sau đây tương đương:

a) \(mx^2-\left(m+1\right)x+1=0\)\(x-1=0\)

b) \(\left(x-3\right)\left(ax+2\right)=0\) và x +1 =0

2
25 tháng 2 2020

bố mẹ thằng nào biết mới lạ

25 tháng 2 2020

c) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\ \Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\\ \Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\\ \Leftrightarrow\left(x+2005\right)=0\Leftrightarrow x=-2005\)

câu egf làm tương tự