Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có \(2n-1⋮n-3\) ( \(n\in Z\))
=> \(2\left(n-3\right)+5⋮n-3\)
=> 5\(⋮n-3\)
=> \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Vậy \(n\in\left\{2;-2;4;8\right\}\)
Bài 1:
Ta có: (2n-1)/(n-3)=(2n-6+5)/(n-3)=2+5/(n-3)
Để 2n-1 chia hết cho n-3 thì 2+5/(n-3) phải thuộc Z mà 2 thuộc Z nên 5/(n-3) phải thuộc Z
Hay n-3 thuộc ước của 5 <=>(n-3) thuộc {-5;-1;1;5}
Có bảng:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Nhận xét | TM | TM | TM | TM |
Vậy ...
b) |x - (-2)| = -1
=> |x + 2| = -1
=> \(\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1-2\\x=-1-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c) 5 - |x + 1| = 20
=> |x + 1| = 5 - 20
=> |x + 1| = -15
=> x không có số nào thỏa mãn
d) (-1) + 3 + (-5) + 7 + ... + x = 600
=> [(-1) + 3] + [(-5) + 7] + ... + [x + (x - 2)] = 600
=> 2 + 2 + 2 + ... + 2 = 600
=> (x - 1) : 2 + 1 = 600
=> (x - 1) : 2 = 600 - 1
=> (x - 1) : 2 = 599
=> x - 1 = 599 . 2
=> x - 1 = 1198
=> x = 1198 + 1
=> x = 1199
e) 9 \(\le\)|x - 3| < 11
=> |x - 3| \(\in\){9;10}
|x - 3| = 9
\(=>\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}=>\orbr{\begin{cases}x=9+3\\x=-9+3\end{cases}}=>\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)
|x - 3| = 10
\(=>\orbr{\begin{cases}x-3=10\\x-3=-10\end{cases}}=>\orbr{\begin{cases}x=10+3\\x=-10+3\end{cases}}=>\orbr{\begin{cases}x=13\\x=-7\end{cases}}\)
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
bài 2:137x137x=137x*10 000+137x
=137x*10 001
Ta thấy 10 001 ko chia hết 13
=>137x chia hết 13 mà 13 chia hết 13 nên 7x chia hết 13
=>x=8
\(\frac{8a+19}{4a+1}=\frac{2\left(4a+1\right)+17}{4a+1}=\frac{2\left(4a+1\right)}{4a+1}+\frac{17}{4a+1}=2+\frac{17}{4a+1}\in Z\)
=>17 chia hết 4a+1
=>4a+1\(\in\){1,-1,17,-17}
=>a\(\in\){0;-0,5;-4;5;4}