K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . ( 41994 - 1 ) + 25

A = 25 . ( 41994 - 1 + 1 )

A = 25 . 41994 

A = 25 . 4 . 41993

A = 100 . 41993 \(⋮\)100

2.

a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2 

Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4 

Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 ) 

= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )

= 5b + 10

= 5 . ( b + 2 ) \(⋮\)5

3.

Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên

\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên

AH
Akai Haruma
Giáo viên
19 tháng 10

Bài 1:

a. $2x-10-[3x-14-(4-5x)-2x]=2$

$2x-10-3x+14+(4-5x)+2x=2$

$-x-10+14+4-5x+2x=2$

$-4x+8=2$

$-4x=-6$

$x=\frac{-6}{-4}=\frac{3}{2}$

b. Đề sai. Bạn xem lại. 

c.

$|x-3|=|2x+1|$

$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$

$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
19 tháng 10

Bài 2:

a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$

Ta có:

$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)

b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$

Ta có:

$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)

c.

Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.

Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$

Tổng của $n$ số nguyên liên tiếp là:

$a+(a+1)+(a+2)+....+(a+n-1)$

$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$

$=n[a+\frac{n-1}{2}]$

Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên

$\Rightarrow a+\frac{n-1}{2}$ nguyên

$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$

 

15 tháng 3 2016

goi so nguyen do la x

.) ta co : x+x+1+x+2 =3x+3

                            =3(x+1) chia het cho 3

vay tong cua 3 so tu nhien lien thi chia het cho 3

.) ta co : x+x+1+x+2+x+4+x+5=5x+5

                                             =5(5+1) chia het cho 5

15 tháng 3 2016

gọi 3 số đó là a: a+1 a+2

ta có a+ a+1+ a+2=3a+3

3 chia hết cho 3

suy ra 3a chia hết cho 3

suy ra 3a+3 chia hết cho 3

syu ra tổng của 3 số nguyên liên tiếp chia hết cho 3

tương tự chia hết cho 5

14 tháng 7 2017

a, vì trong 3 số đó có số chia hết cho 3

b, vì trong 3 số lẻ có số chia hết cho 3

c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.

14 tháng 7 2017

a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)

  • \(2n+2n+2+2n+4=6n+6\)

                                                      \(=6\left(n+1\right)\) 

                                                      \(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.

b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)

  • \(2n+1+2n+3+2n+5=6n+9\)

                                                               \(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.

c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:

  • \(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)

\(=5n+10\) 

\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.

  • \(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)

\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).

T_i_c_k cho mình nha.

Thank you so much!Wish you would better at Math ^^

5 tháng 9 2016

a )Gọi 3 số tự nhiên liên tiếp là : a , a + 1, a + 2

Tổng của 3 số tự nhiên liên tiếp là:

     a +a+1+a+2

= ( a+ a+ a) +( 1 + 2)

=     3 x a + 3

Vì 3xa chia hết cho 3

   và 3 chia hết cho 3

\(\Rightarrow\)3 x a + 3 chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

Chỉ làm dc phần a) thui, sorry nha

  k giùm mk nha

5 tháng 9 2016

a/ Gọi ba số tự nhiên liên tiếp đó lần lượt là a ; a +  1 ; a + 2 (với a là số tự nhiên)ta có:

a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3

Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.

b/  Gọi bốn số tự nhiên liên tiếp đó lần lượt là a ; a +  1 ; a + 2 ; a + 3 (với a là một số tự nhiên) ta có:

a + (a + 1) + (a + 2) + (a + 3) = 4a + 4 không chia hết cho 4

Vậy tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.

(Đề của câu b) bạn ghi sai nha phải là CMR: Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4)

20 tháng 8 2018

Gọi 3 số nguyên liên tiếp là:  \(a-1;\)\(a;\)\(a+1\)

Tổng các lập phương của 3 số nguyên liên tiếp là:

     \(A=\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)

\(=3a\left(a^2+1\right)=3a\left(a^2-1+3\right)=3a\left(a^2-1\right)+9a\)

\(=3\left(a-1\right)a\left(a+1\right)+9a\)

Nhận thấy:  \(\left(a-1\right)a\left(a+1\right)\)là tích của 3 số nguyên liên tiếp => chia hết cho 3 

=>  \(3\left(a-1\right)a\left(a+1\right)\)chia hết cho 9;    9a chia hết cho 9

=>   A  chia hết cho 9

25 tháng 9 2018

Gọi \(3\) số nguyên liên tiếp lần lượt là: \(\left(a-1\right);a;\left(a+1\right)\)

Chứng minh: \(\left(a-1\right)^3+a^3+\left(a+1\right)^3\) chia hết cho \(9\).

\(\left(a-1\right)^3+a^3+\left(a+1\right)^3\)

\(=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)

\(=3a^3+6a\)

\(=3a\left(a^2+2\right)\)

\(=3a\left(a^2-1\right)+9a\)

\(=3\left(a-1\right)a\left(a+1\right)+9a\)

Vì tích của \(3\) số tự nhiên liên tiếp chia hết cho 3 nên \(3\left(a-1\right)a\left(a+1\right)\) chia hết cho \(9\).

Mặt khác \(9a\) chia hết cho \(9\) nên:

\(\Rightarrow3\left(a-1\right)a\left(a+1\right)+9a\)

1 tháng 8 2015

nhưng đề là 2 số chẵn mà Nguyễn Ngọc Quý

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại