Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2)
ta có
= 2015 +2015^2+2015^3+2015^4+2015^5+2015^6
= (2015 +2015^2)+(2015^3+2015^4)+(2015^5+2015^6)
= (2015.1+2015.2015)+ ... +(2015^5.1+2015^5.2015)
= 2015.2016+...+2015^5.2016
= 2016.(2015+2015^3+2015^5) chia hết cho 2016
=> (2015 +2015^2+2015^3+2015^4+2015^5+2015^6) chia het cho 2016
Bài 1
1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)
=1+0+0+....+0
=1
Bài 2
Ta có: S=3^1+3^2+...+3^2015
3S=3^2+3^3+...+3^2016
=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)
2S=3^2016-3^1
S=\(\frac{3^{2016}-3}{2}\)
Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)
=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)
=> S có 2 tận cùng 4 hoặc 9
mà S có số hạng lẻ => S có tận cùng là 9
Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016
Goi S = 2 + 22 + 23 + 24 + ......+ 22016
<=> S = ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 22015 + 22016 )
<=> S = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ....... + 22015.( 1 + 2 )
<=> S = 2.3 + 23.3 + ...... + 22015.3
<=> S = 3.( 2 + 23 + .... + 22015 )
Vì 3 chia hết cho 3 => S chia hết cho 3
M=2016^2015+2016^2014=2016^2014(2016+1)=2016^2014.2017 chia hết cho 2017 (đpcm)