Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Số phần tử của không gian mẫu là: \(C_{21}^2 = 210\)
- Số số chẵn là: 10
- Số số lẻ là: 11
- Để chọn được hai số có tổng là một số chẵn ta cần chọn
+ TH1: 2 số cùng là số chẵn: \(C _{10}^2= 45\) (cách)
+ TH2: 2 số cùng là số lẻ: \({}C_{11}^2 = 55\)
⇨ Xác suất để chọn được hai số có tổng là một số chẵn bằng: \(P = \frac{{45 + 55}}{{210}} = \frac{{10}}{{21}}\)
⇨ Chọn C
Tổng 5 chữ số bất kì luôn \(\ge0+1+2+3+4=10\) => Mọi chữ số đề \(\le8\)
Nếu X không có 0 tổng 5 chữ số bất kì luôn \(\ge1+2+3+4+5=15\) => Mọi chữ số đều \(\le3\) ---> Vô lý
Vậy X luôn có 0 và không có 9.
Các X bộ số thỏa mãn:
+) \(\left(0;1;2;3;4;8\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 3.4.4! = 408 số chẵn
+) \(\left(0;1;2;3;5;7\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 4.4! = 216 số chẵn
+) \(\left(0;1;2;4;5;6\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 3.4.4! = 408 số chẵn
=> Xác suất chọn được số chẵn: \(P=\dfrac{408+408+216}{600\cdot3}=\dfrac{43}{75}\)
`tan3x=tanx`
`<=>3x=x+kπ`
`<=>x=k π/2`
Phương trình có `4` điểm biểu diễn các nghiệm: `π/2 ; π ; (3π)/2 ; 2π`.
Không gian mẫu: \(A_9^5\)
Gọi số cần lập có dạng \(\overline{abcde}\)
\(\Rightarrow e\) có 4 cách chọn
Chọn bộ abcd:
- Chọn 2 số lẻ từ 5 số lẻ và hoán vị chúng: \(A_5^2\) cách
- Chọn 2 số chẵn từ 3 số chẵn còn lại (khác e): \(C_3^2\) cách
\(\Rightarrow\) Bộ abcd có \(A_5^2.C_3^2.3!\) cách
Xác suất: \(P=\dfrac{4.A_5^2.C_3^2.3!}{A_9^4}=...\)
1. Không gian mẫu: \(C_{30}^2\)
Trong 3 số nguyên dương đầu tiên có 15 số chẵn và 15 số lẻ
Hai số có tổng là chẵn khi chúng cùng chẵn hoặc lẻ
\(\Rightarrow C_{15}^2+C_{15}^2\) cách lấy 2 số có tổng chẵn
Xác suất: \(P=\dfrac{C_{15}^2+C_{15}^2}{C_{30}^2}=...\)
2. ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow tan3x=cot\left(\dfrac{\pi}{2}-x\right)\)
\(\Leftrightarrow tan3x=tanx\)
\(\Rightarrow3x=x+k\pi\)
\(\Rightarrow x=\dfrac{k\pi}{2}\)
\(\Rightarrow x=k\pi\)
Có 2 điểm biểu diễn