Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A
\(\Delta ABE\)= \(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )
Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A
b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .
Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\)
c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 600 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600
A B C M D E
Ta có :
\(BD=DE=EC\)
\(\Rightarrow BD+DE=EC+DE\)
\(\Rightarrow BE=DC\)
=> Ta c/m được \(\Delta EAB=\Delta DAC\left(C.g.c\right)\)
\(\Rightarrow\widehat{EAB}=\widehat{DAC}\)
=> AD = AE
b)
Vì M là trung điểm của BC
\(\Rightarrow BM=CM\)
\(\Rightarrow BD+DM=ME+EC\)
Mà BD = EC
\(\Rightarrow DM=EM\)
=> \(\Rightarrow\Delta DAM=\Delta EAM\left(c.c.c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
c)
Nếu \(\widehat{A}=60^0\)
Mà AD=AE
=> tam giác ADE đều
=> Các góc còn lại cũng bằng 600
A B C D M E
Giải:
a) Ta có: \(BD=DE=EC\left(gt\right)\)
\(\Rightarrow BD+DE=EC+DE\)
\(\Rightarrow BE=CD\) (*)
Xét \(\Delta EAB,\Delta DAC\) có:
\(BE=CE\) ( theo (*) )
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A vì AB = AC )
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta EAB=\Delta DAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{EAB}=\widehat{DAC}\) ( góc t/ứng )
b) Vì \(\Delta EAB=\Delta DAC\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng )
\(\Rightarrow\Delta DAE\) cân tại A
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) (**)
Xét \(\Delta DAM,\Delta EAM\) có:
\(MD=ME\left(=\frac{1}{2}DE\right)\)
\(\widehat{ADE}=\widehat{AED}\) ( theo (**) )
AM: cạnh chung
\(\Rightarrow\Delta DAM=\Delta EAM\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{EAM}\) ( góc t/ứng )
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)
c) Trong \(\Delta AED\) cân tại A có \(\widehat{DEA}=60^o\)
\(\Rightarrow\Delta AED\) là một tam giác đều
Vậy...
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)