K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

Bài làm thì dài lắm nên mik nói qua thôi

Bài 1

a) Vì AB=AC => tam giác ABC cân tại A

=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm

b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)

=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)

15 tháng 7 2016

a, Xét tam gác ABH và tam giác ACH có:

     AB=AC (gt)

     BH=CH 

     AH là cạnh chung

=> tam giác ABH=ACH ( c.c.c)

=> góc BAH = CAH ( hai góc tương ứng )

Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC

b, Xét tam giác vuông ABH và tam giác vuông KCH có :

                   BH=CH (gt)

                    HK=HA (gt) 

=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )

=> góc HAB = góc HKC ( hai góc tương ứng )

Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )

24 tháng 12 2017

cau nay tui cung lm ko ra

4 tháng 11 2016

a) Tam giác ABC có AB = AC nên tam giác ABC cân tại A

\(\Delta ABE\)\(\Delta ACD\) ( cgc ) ( AB = AC (gt) ; \(\widehat{B}\) =\(\widehat{C}\) ( tam giác ABC cân tại A) ; BE = CD = \(\frac{2}{3}\) BC )

Do đó \(\widehat{BAE}\) = \(\widehat{DAC}\) => tam giác DAE cân tại A

b) tam giác ABC cân tại A có AM là đường trung tuyến => AM là đường cao của tam giác ABC .

Tam giác DAE cân tại A có AM là đường cao ứng với cạnh DE => AM là đường phân giác của tam giác DAE => AM là tia phân giác của \(\widehat{DAE}\) 

c) Tam giác DAE cân tại A có \(\widehat{DAE}\) = 60 => Tam giác DAE là tam giác đều => mỗi góc trong tam giác DAE đều là 600

29 tháng 7 2017

ahihi Dồ     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

28 tháng 11 2016

A B C M D E

Ta có :

\(BD=DE=EC\)

\(\Rightarrow BD+DE=EC+DE\)

\(\Rightarrow BE=DC\)

=> Ta c/m được \(\Delta EAB=\Delta DAC\left(C.g.c\right)\)

\(\Rightarrow\widehat{EAB}=\widehat{DAC}\)

=> AD = AE

b)

Vì M là trung điểm của BC

\(\Rightarrow BM=CM\)

\(\Rightarrow BD+DM=ME+EC\)

Mà BD = EC

\(\Rightarrow DM=EM\)

=> \(\Rightarrow\Delta DAM=\Delta EAM\left(c.c.c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

c)

Nếu \(\widehat{A}=60^0\)

Mà AD=AE

=> tam giác ADE đều

=> Các góc còn lại cũng bằng 600

28 tháng 11 2016

A B C D M E

Giải:

a) Ta có: \(BD=DE=EC\left(gt\right)\)

\(\Rightarrow BD+DE=EC+DE\)

\(\Rightarrow BE=CD\) (*)

Xét \(\Delta EAB,\Delta DAC\) có:
\(BE=CE\) ( theo (*) )

\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A vì AB = AC )

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta EAB=\Delta DAC\left(c-g-c\right)\)

\(\Rightarrow\widehat{EAB}=\widehat{DAC}\) ( góc t/ứng )

b) Vì \(\Delta EAB=\Delta DAC\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng )

\(\Rightarrow\Delta DAE\) cân tại A

\(\Rightarrow\widehat{ADE}=\widehat{AED}\) (**)

Xét \(\Delta DAM,\Delta EAM\) có:

\(MD=ME\left(=\frac{1}{2}DE\right)\)

\(\widehat{ADE}=\widehat{AED}\) ( theo (**) )

AM: cạnh chung

\(\Rightarrow\Delta DAM=\Delta EAM\left(c-g-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{EAM}\) ( góc t/ứng )

\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)

c) Trong \(\Delta AED\) cân tại A có \(\widehat{DEA}=60^o\)

\(\Rightarrow\Delta AED\) là một tam giác đều

Vậy...

 

6 tháng 3 2016

tích mk rồi mk giải cho