Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Denta = (a + b )^2 - 4(-2(a^2 -ab + b^2))
= a^2 + ab+ b^2 +8a^2 -8ab + 8b^2
=9a^2 + 9b^2 - 7ab
=2( 4a^2 - 4ab + b^2 ) + (a^2 + ab + b^2/4) + 27/4
=2(2a - b)^2 + (a + b/2)^2 + 27/4 lớn hơn 0 với mọi a, b
Vậy pt luôn có nghiệm
a
a+b+c=0<=>a^2+b^2+c^2+2ab+2bc+2ca=0
<=>a^2+b^2+b^c=-2ab-2bc-2ca
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2+8abc(a+b+c)
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2(vì a+b+c=0)(1)
(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
<=>2(a^4+b^4+c^4)=4a^2b^2+4b^2c^2+4c^2a^2(2)
Từ (1) và (2)=>Đccm
bai 1. Tìm x,y sao cho
a, (3x2+1)2+2xy+y2+1=0
b,x2+2xy+4y2+4y+y2+1=0
cac ban oi giup mih. minh dang can
a, (3x2+1)2+2xy+y2+1=0
(3x2+1)2+(y+1)2=0 Vì (3x2+1)2 >=0 ; (y+1)2 >=0 với mọi x,ý
=>3x2+1=0 => 3x2=1 => x2=1/3 => x=căn 1/3
y+1=0 => y=-1
b, x2+2xy+4y2+4y+y2+1=0
(x2+2xy+y2) + (4y2+4y+1)=0
(x+y)2 + (2y+1)2=0 Vì (x+y)2 >=0 ; (2y+1)2 >=0 vói mọi x,y
=> 2y+1=0 => y=-1/2
x+y=0 => x-1/2=0 => x=1/2
Cac ban giup minh voi
1) Giai cac phuong trinh
a) 2010.(4x-3)-4x2+3=0
b)( x2-\(\frac{25}{4}\))2= 10x +1
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...