K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^2-8x-33=0\)

a=1; b=-8; c=-33

Vì ac<0 nên phương trình có hai nghiệm phân biệt

b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)

 

5 tháng 3 2022

a.

-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)

Vậy pt luôn có 2 nghiệm phân biệt

-Giả sử: \(x_1;x_2\) là nghiệm của pt

Theo hệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)

 

17 tháng 5 2019

Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho 

17 tháng 5 2019

lên Học24h 

7 tháng 8 2017

Toán lớp mấy

7 tháng 8 2017

toán tuổi thơ chắc chỉ cần đáp số thôi nhỉ

1. S={7;-5}

2. HPT có 2 nghiệm (x;y) là (2;-3) và (3/2;-7/2)

3. a=b=0

4. Dễ rồi

1 tháng 4 2019

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

1 tháng 4 2019

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 (x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 m^2-8m=0 m(m-8)=0 m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
4 tháng 5 2018

a. 

Xét phương trình: \(x^2+4mx-2m^2=0\) có : \(\Delta^'=(b^')^2-ac=(2m)^2+2m^2=6m^2\ge0\forall m\)=> pt luôn có nghiệm với mọi giá trị của m

b. Để pt có 2 nghiệm x1,x2 thì \(\Delta^'>0\Leftrightarrow m\ne0\)(*)

pt có 2 nghiệm x1,x2 thỏa mãn x1 +x2 = 2x1x2 thì m phải là nghiệm của hệ pt sau:

x1+ x2 = -4m (1)

x1.x2 = -\(2m^2\) (2)

x1+x2=2x1x2 (3)

Thế (1) và (2) vào pt(3) ta được:  -4m = -4m2

<=> m = 0 hoặc m= 1 

Kết hợp với đk (*) => m=1