Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)hcn ABCD
=> AB = CD và AD = BC
=> AB=CD=8 và AD=BC=6
hcn ABCD
=> góc A = góc B = góc C = góc D = 90 độ
tam giác abd có góc A = 90 độ
=> tam giác abd vuông a
AB2+AD2=BD2
<=>62+82=BD2
<=>BD=10(cm)
a) Áp dụng định lí Pytago: \(BD^2=AB^2+AD^2=8^2+6^2=100\)
\(\Rightarrow BD=10\left(cm\right)\)
b) Xét \(\Delta ADH\) và \(\Delta BDA\) có: \(\left\{{}\begin{matrix}\widehat{AHD}=\widehat{BAD}=90^0\\\widehat{ADH}=\widehat{BDA}\end{matrix}\right.\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\) (g.g)
c) Do \(\Delta ADH\sim\Delta BDA\Rightarrow\dfrac{AD}{DH}=\dfrac{BD}{AD}\Rightarrow AD^2=DH.DB\)
a) và (b không nhìn rõ
a)Xét tam giác HBA và tam giác ABD có:
góc AHB=góc DAB(=90độ)
góc B chung
=> tam giác HBA đồng dạng tam giác ABD (g-g)
b) xét tam giác HDA và tam giác ADB có
góc AHD =góc DAB(=90độ)
góc D chung
=> tam giác HDA đồng dạng tam giác ADB (g-g)
=>AD/BD=HD/BD=>AD^2=DH.BD
c)vì ABCD là hcn=> BC=AD=6cm
tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)
=>BD^2=6^2+8^2
=>BD=10(cm)
Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)
tam giác ADH vuông tại H
=>Ad^2=AH^2+HD^2(ĐL Pytago)
=>6^2=AH^2+3,6^2
=>AH=4.8(cm)
a, Xét △AHD và △BAD có:
∠AHD=∠BAD (=90 độ), ∠ADB chung
=> △AHD ∼ △BAD (g.g)
b, Xét △EHD và △BCD có:
∠BHA=∠EHD (=90 độ) (đđ) =>∠BCD=∠EHD (=90 độ)
∠BDC chung
=> △EHD ∼ △BCD (g.g)
\(\dfrac{HD}{CD}=\dfrac{ED}{BD}\)=> DH.DB=DE.DC
c, Áp dụng Đ/l Pitago vào △ABD => BD=√(62+82)=10 cm
Ta có SABC=\(\dfrac{1}{2}AH.BD=\dfrac{1}{2}.AB.AD\)=>AH=\(\dfrac{8.6}{10}=4,8cm\)
Áp dụng Đ/l Pitago vào △AHD => HD=√(62-(4,8)2)=3,6 cm => BH=BD-HD=6,4 cm
Xét △BHA và △DHE có: ∠BAH=∠HED (AB//CD), ∠BHA=∠EHD (=90 độ) (đđ) =>△BHA ∼ △DHE (g.g)
\(\dfrac{AB}{DE}=\dfrac{BH}{HD}=>\dfrac{8}{DE}=\dfrac{6,4}{3,6}=>DE=4,5cm\)
Ta có EM//DB => \(\dfrac{MB}{BC}=\dfrac{ED}{CD}=>\dfrac{MB}{6}=\dfrac{4,5}{8}=>MB=3,375cm\)(đpcm)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a: DB=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}=\widehat{BDA}\)
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔBAD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
a.
Xét tam giác AHB và tam giác BCD có:
góc H = C = 90o
góc ABH = BDC ( so le trong)
Do đó: tam giác AHB ~ BCD ( g.g)
b.
Xét tam giác ADH và BDA có:
góc D chung
góc AHD = BAD = 90o
Do đó: tam giác ADH ~ BDA
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\Rightarrow AD^2=BD.DH\)
c.
Tam giác ABD vuông tại A
=> BD2 = AB2 + AD2
=> BD2 = 82 + 62
=> BD = 10 cm
Ta có: tam giác ADH~BDA
=> \(\dfrac{AD}{BD}=\dfrac{AH}{AB}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{6.8}{10}=4,8\)
Tam giác ADH vuông tại H
=> AD2 = AH2 + DH2
=> DH2 = AD2 - AH2
=> DH2 = 62 - 4,82
=> DH = 3,6
Vậy: AH = 4,8 cm và DH = 3,6 cm
a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Xét ΔDHA vuôg tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
c: ΔDHA đồng dạng với ΔDAB
=>DH/DA=DA/DB
=>DA^2=DH*DB