K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

a) Xét tứ giác AMND có 

AM//DN

AM=DN

Do đó: AMND là hình bình hành

Suy ra: AD=NM

b) Xét tứ giác BCNM có 

BM//CN

BM=CN

Do đó: BCNM là hình bình hành

 

6 tháng 6

File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.

C) gọi giao điểm của AN và CD là O 

Xét ∆ABN và ∆OCN, ta có:

NC=NB( giả thiết)

NOC = NAB ( góc so le trong)

CNO = BNA ( đối đỉnh )

=> ∆ ABN = ∆OCN ( g-c-g)

=> CO=CA ( cặp cạnh tương ứng bằng nhau)

Mà tứ giác ABCD là hình vuông 

=> AB=CD=CO hoặc CD =CO

Vì ∆APM là tam giác vuông tại P 

=> Gốc DPN =90°

Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)

Ta có CD=CO ( cmt)

DPO =90°

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền 

=> DC=PC=CO

=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)

 

a: Xét tứ giác AMCN có

AM//CN

AM=CN

=>AMCN là hình bình hành

Xét tứ giác AMND có

AM//ND

AM=ND

AM=AD

=>AMND là hình thoi

b: AMND là hình thoi

=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N

Xét tứ giác MBCN có

MB//CN

MB=CN

MB=BC

=>MBCN là hình thoi

=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN

Xét ΔMDC có

MN là trung tuyến

MN=DC/2

=>ΔMDC vuông tại M

Xét tứ giác MINK có

góc MIN=góc MKN=góc IMK=90 độ

=>MINK là hình chữ nhật

c: Xét ΔMDC có MI/MD=MK/MC

nên IK//DC

Bạn ơi, đề câu a sai nhé ! Mình đọc không có điểm I nha !