K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2022

Bài 1:

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

22 tháng 11 2022

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi

13 tháng 12 2020

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và \(ME=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và \(NF=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và \(EN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà \(EM=\dfrac{BD}{2}\)(cmt) và \(EN=\dfrac{AC}{2}\)(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi

19 tháng 6 2015

a)  XÉT HÌNH THANG AEDF(AE//DF) O LÀ TRUNG ĐIỂM EF, OM//DF=> M PHẢI LÀ TĐ CỦA AD

TƯƠNG TỰ C/M N LÀ TĐ BC

ĐẾN ĐÂY LÀM GIỐNG BÀI HÔM TRC ĐÓ E. KẺ 2 ĐƯỜNG CHÉO AC,DB

TAM GIÁC ADB: E,M LÀ TRUNG ĐIỂM 2 CẠNH BÊN => EM LÀ ĐTB => EM//DB. TƯƠNG TỰ VỚI TAM GIÁC DBC:... => FN//DB

=> EM//FN.

TƯƠNG TỰ C/M: EN//MF => TỨ GIÁC EMFN LÀ HÌNH BÌNH HÀNH

B) EMFN LÀ HÌNH THOI <=> EM=EN. MÀ EM=1/2 DB; EN=1/2 AC => AC=DB => HÌNH THANG ABCD CÂN

C) EMFN LÀ HÌNH VUÔNG <=> EMFN LÀ HÌNH THOI (ĐK CÂU B) VÀ EM VUÔNG GÓC EN TẠI E. MÀ EM//DB, EN//AC => DB VUÔNG GÓC AC

=> ABCD là hình thang cân và có 2 đường chéo vuông góc

19 tháng 6 2015

lần sau kẻ hình nha

30 tháng 11 2016

kho qua

30 tháng 11 2016

kho that

22 tháng 11 2022

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi

22 tháng 11 2022

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi

18 tháng 12 2023

a: Ta có: BC=AD(ABCD là hình bình hành)

\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)

\(AF=FD=\dfrac{AD}{2}\)(F là trung điểm của AD)

Do đó: BE=EC=AF=FD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

Hình bình hành ABEF có \(BE=BA\left(=\dfrac{BC}{2}\right)\)

nên ABEF là hình thoi

b: Ta có: BE=BA

BA=BI

Do đó: BE=BI

Ta có: BE//AF

=>\(\widehat{IBE}=\widehat{IAF}\)(hai góc đồng vị)

mà \(\widehat{IAF}=60^0\)

nên \(\widehat{IBE}=60^0\)

Xét ΔBIE có BI=BE và \(\widehat{IBE}=60^0\)

nên ΔBIE đều

=>\(\widehat{I}=60^0=\widehat{A}\)

Xét tứ giác AIEF có EF//AI 

nên AIEF là hình thang

Hình thang AIEF có \(\widehat{EIA}=\widehat{FAB}\left(cmt\right)\)

nên AIEF là hình thang cân

31 tháng 10 2022

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

24 tháng 12 2021

a, Ta có :

EC // FD

\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)

=> ECDF là hình bình hành 

\(EF=AB=\frac{1}{2}BC\)

=> ECDF là hình thoi

b, \(\widehat{A} =60^o\)

\(\Rightarrow D=120^o\)

\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)

Mà BE // AD

==> BEDA là hình thang cân 

c, Xét tam giác AFE : AF = EF --- > góc AFE

BEFA là hình thoi 

==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)  

Mà EDA = 60o

=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)

                                                 \(=30^o+60^o+\widehat{EAD}\)

                                                 \(\Rightarrow\widehat{AED}=60^o\)