K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

lỗi

21 tháng 3 2022

lỗi

1:

a: loading...

b: PTHĐGĐ là:

3x^2-x-2=0

=>3x^2-3x+2x-2=0

=>(x-1)(3x+2)=0

=>x=1 hoặc x=-2/3
Khi x=1 thì y=3*1^2=3

Khi x=-2/3 thì y=3*4/9=4/3

c: f(-1)=3(-1)^2=3

f(2)=3*2^2=12

f(1/3)=3*(1/3)^2=1/3

I
1 tháng 4 2022

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/

 

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

20 tháng 4 2020

Bài 1 : 

Nửa chu vi hình chữ nhật là: 50:2=25 (m)

Gọi chiều rộng là x (0<x<12,5)

=> chiều dài là: 25 -x (m)

Diện tích là: x (25-x)

Ta có phương trình: 

\(x\left(25-x\right)=144\)

\(\Rightarrow-x^2+25x=144\)

\(\Rightarrow x^2-25x+144=0\)

\(\Rightarrow x^2-9x-16x+144=0\)

\(\Rightarrow\left(x-9\right)\left(x-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\)

Vậy chiều rộng là 9m và chiều dài là 25-9=16m