Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biểu thức A xác định `<=>x^2-1 ne 0 <=> (x-1)(x+1) ne 0 <=> x ne +-1`
b) `A=(x^2-3x-4)/(x^2 -1) = (x^2+x-4x-4)/(x^2-1) = (x(x+1)-4(x+1))/(x^2-1)`
`= ((x+1)(x-4))/((x+1)(x-1))=(x-4)/(x-1)`
c) `A` là số nguyên `<=> (x-4) vdots\ (x-1)`
`<=>[(x-1)-3] vdots\ (x-1)`
`<=> -3\ vdots\ (x-1)`
`<=> (x-1)\ in\ Ư(-3)`
`<=>(x-1)\ in\ {-3;-1;3;1}`
`<=>x\ in\ {-2;0;4;2}`
Vậy...
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
c: Để A là số nguyên thì x-1-3 chia hết cho x-1
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
sau khi rút gọn ta được \(P=\frac{x-4}{x-2}\left(x\ne-3;x\ne2;x\ne-2\right)\)
d,ta có \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\left(x\ne-2;x\ne-3;x\ne2\right)\)
để P nguyên mà x nguyên \(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
ta có bảng:
x-2 | 1 | -1 | 2 | -2 |
x | 3(tm) | 1(tm) | 4(tm) | 0(tm) |
vậy \(P\in Z\Leftrightarrow x\in\left\{3;1;4;0\right\}\)
e,x2-9=0
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(kotm\right)\end{cases}}\)
thay x=3 vào P đã rút gọn ta có \(P=\frac{3-4}{3-2}=-1\)
vậy với x=3 thì p có giá trị bằng -1
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
M xác định
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)
Thay x=5 ta có:
\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)
Vậy \(M=5\)tại x=5
\(M=0\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)
Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)
\(M=-1\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy với \(x=-1\)thì \(M=-1\)
b,\(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x+8}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x-8}{3\left(x-2\right)\left(x+2\right)}\)
c, Thay x = 1 vào A ta đc
\(\frac{1-8}{3\left(1-2\right)\left(1+2\right)}=\frac{7}{9}\)
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x-6\ne0\\x^2-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne6\\x^2\ne4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne2\\x\ne\pm2\end{cases}\Leftrightarrow}x\ne\pm2}\)
Vậy A xác định khi \(x\ne\pm2\)
b) \(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4x+8}{3\left(x+2\right)\left(x-2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4x+8-3x}{3\left(x-2\right)\left(x+2\right)}=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
Vậy \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\left(x\ne\pm2\right)\)
c) Thay x=1 (tmđk) vào A ta có: \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
Vậy \(A=-1\)khi x=1