Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
+) ta có : \(N=\dfrac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}\left(\sqrt{30}-\sqrt{2}\right)}=\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}\)
\(=\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\dfrac{1}{2}\)
+) ta có : \(P=\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\left(2-\sqrt{x}\right)\left(4+2\sqrt{x}+x\right)}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(4+2\sqrt{x}+x+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(2+\sqrt{x}\right)^2\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}=\left(2-\sqrt{x}\right)^2\)
<=>N=\(\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{60}-2}\)
<=>N=\(\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\sqrt{15}-2}\)
<=>N=\(\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}\)
<=>N=\(\dfrac{1}{2}\)
P=\(\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
P=\(\left(\dfrac{8-x\sqrt{x}+4\sqrt{x}-2x}{2-\sqrt{x}}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
P=\(\dfrac{8+3\sqrt{x}+x}{2-\sqrt{x}}.\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}\)
P=\(\dfrac{\left(8+3\sqrt{x}+x\right)\left(2-\sqrt{x}\right)}{4+4\sqrt{x}+x}\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\) \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)
\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)
vậy......
a) \(P=\left(\frac{x+8}{x\sqrt{x}+8}-\frac{1}{\sqrt{x}+2}\right):\left(1-\frac{x-3\sqrt{x}+6}{x-2\sqrt{x}+4}\right)\)
\(P=\frac{x+8-x+\sqrt{x}-4}{x\sqrt{x}+8}:\frac{x-2\sqrt{x}+4-x+3\sqrt{x}-6}{x-2\sqrt{x}+4}\)
\(P=\frac{\sqrt{x}+4}{x\sqrt{x}+8}:\frac{\sqrt{x}-2}{x-2\sqrt{x}+4}\)
\(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}.\frac{1}{\sqrt{x}-2}\)
\(P=\frac{\sqrt{x}+4}{x-4}\)
b) Ta có \(x=6+4\sqrt{2}=2^2+2.2.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{2}\)
Suy ra \(P=\frac{2+\sqrt{2}+4}{6+4\sqrt{2}-4}=\frac{6+\sqrt{2}}{4\sqrt{2}+2}=\frac{11\sqrt{2}-2}{14}\)
cô Hoàng Thị Thu Huyền ơi e thấy có j đó sai sai ở đây
chỗ dòng thứ 2 phải là
\(P=\left[\frac{8}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}-\frac{x-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
vì theo hằng đẳng thức A3 + B3= (A+B)(A2- AB +B2)
a/ \(A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right)\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+3}\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\dfrac{3}{\sqrt{x}+3}\cdot\left(-\dfrac{\sqrt{x}-2}{\sqrt{x+3}}\right)=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}\)
b/ A < 1
<=> \(\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}< 1\)
\(\Leftrightarrow3\left(\sqrt{x}-2\right)< \left(\sqrt{x}+3\right)^2\)
\(\Leftrightarrow3\sqrt{x}-6< x+6\sqrt{x}+9\)
\(\Leftrightarrow-x-3\sqrt{x}-15< 0\)
\(\Leftrightarrow x+3\sqrt{x}+15>0\) (luôn đúng)
=> A < 1 với mọi x >= 0
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0