Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là trung điểm của MC suy ra: MK=KC=1/2 MC
Do đó: AM=MK
DK là đường trung bình của tam giác BMC nên DK song song với BM và DK =1/2 BM (2)
Tam giác ADK có: M là trung điểm của AK và OM song song với DK(cmt)
Vì thế O là trung điểm của AD.
b, OM là đường trung bình của tam giác ADK suy ra: OM=1/2 DK (1)
TỪ (1) và (2) suy ra: OM=1/4 BM
Chúc bạn học tốt.
Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 8 - Học toán với OnlineMath tham khảo
Sửa lại bài:
Kẻ MN vuông góc với B'C'
Ta có: BB'//CC'(cùng vuông góc với d)<=>tứ giác BB'CC' là hình thang
Mà MN//BB'(cùng vuông góc với d)
Suy ra: BB'//MN//CC'
Xét hình thang BB'CC' có:
BB'//MN//CC' và BM=MC(gt)
Suy ra: N là trung điểm B'C'<=> B'N=C'N
Mà BM=MC
Suy ra: MN là đường trung bình của hình thang BB'CC'
Suy ra: \(MN=\frac{BB'+CC'}{2}\)(1)
Dễ chứng minh: \(\Delta_vAA'I=\Delta_vMNI\left(ch-gn\right)\)
Suy ra: \(AA'=MN\)(2)
Từ (1) và (2):
Suy ra" \(AA'=\frac{BB'+CC'}{2}\)
Vậy.....
d, Ta có : ME là tia phân giác ngoài của góc MFC => \(\dfrac{MF}{MC}=\dfrac{ÈF}{FC}\left(2\right)\)
MK là tia phân giác trong của góc MFC =>\(\dfrac{FK}{KC}=\dfrac{MF}{MC}\left(2\right)\)
Từ (1) và 2) suy ra : \(\dfrac{EF}{FC}=\dfrac{FK}{KC}\Rightarrow EF.KC=FK.EC\)
a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC
Bài 2:
a: Gọi I là trung điểm của MC
Ta có: \(MI=IC=\dfrac{MC}{2}\)
\(AM=\dfrac{MC}{2}\)
Do đó: AM=MI=IC
=>AM=MI
=>M là trung điểm của AI
Xét ΔBMC có
D,I lần lượt là trung điểm của CB,CM
=>DI là đường trung bình của ΔBMC
=>DI//BM và \(DI=\dfrac{BM}{2}\)
DI//BM
O\(\in\)BM
Do đó: DI//OM
Xét ΔADI có
M là trung điểm của AI
MO//DI
Do đó: O là trung điểm của AD
b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI
=>OM là đường trung bình của ΔADI
=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)
Bài 1:
a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)
=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)
=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)
=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)
=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)
=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)