K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

23 tháng 1 2022

Bài 2:

- Thay x=0 vào P(x) ta được:

P(0)=d => d là số lẻ.

- Thay x=1 vào P(x) ta được:

P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.

- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:

P(e)=ae3+be2+ce+d=0

=>ae3+be2+ce=-d

=>e(ae2+be+c)=-d

=>e=\(\dfrac{-d}{ae^2+be+c}\).

Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho

ae2+be+c.

- Vậy P(x) không thể có nghiệm là số nguyên.

23 tháng 1 2022

thanks bn rất nhiều !!!!! 

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)