Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab ( a>0;a,b<10)
Theo đề bài, ta có: ab-ba=36
10a+b-10b-a=36
9a-9b=36
a-b=4
Lại có: a\(^2\)- b\(^2\)= 40
(a-b)(a+b)=40
suy ra a+b=10
suy ra a=7,b=3
Vậy.......
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Gọi chữ số hàng chục là x ( \(x\inℕ^∗\), \(4\le x\le9\))
Chữ số hàng đơn vị là: \(2x-7\)
Số tự nhiên ban đầu có dạng: \(10x+\left(2x-7\right)\)
Số tự nhiên ban đầu viết theo thứ tự ngược lại có dạng: \(10.\left(2x-7\right)+x\)
Nếu viết 2 chữ số ấy theo thứ tự ngược lại thì số mới nhỏ hơn số cũ 27 đơn vị nên ta có phương trình:
\(10.\left(2x-7\right)+x+27=10x+\left(2x-7\right)\)
\(\Leftrightarrow20x-70+x+27=10x+2x-7\)
\(\Leftrightarrow20x+x-10x-2x=-7+70-27\)
\(\Leftrightarrow9x=36\)\(\Leftrightarrow x=4\)( thoả mãn ĐK )
Vậy chữ số cần tìm là: \(41\)
Bài 1:
Gọi 2 số là a,b (\(a,b\inℤ\))
Ta có: a+b=51(*)
Mà 2/5a=1/6b
=> a=5/12b
Thay vào (*) ta có: 17/12b=51
=>b=36
Bài 1 :
Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)
Tổng hai số bằng : \(x+y=51\left(1\right)\)
Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai
\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)
\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)
\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)
\(< =>612-12y=5y\)\(< =>612=17y\)
\(< =>y=\frac{612}{17}=36\left(3\right)\)
Thay 3 vào 1 ta được : \(x+y=51\)
\(< =>x+36=51< =>x=51-36=15\)
Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15