K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a) (am)n = am.am.am.......am (n lần am) =am.n

b) Ta có: ( - 2)3000= 23000 = (23)1000=81000

              ( -3)2000= 32000= ( 32)1000 =91000

Vì 8<9 nên 81000<91000

Vậy ( -2)3000 < ( -3)2000

                   

4 tháng 7 2017

Bài 1a) Đó là công thức lũy thừa của lũy thừa rồi bạn:

\(\left(a^m\right)^n=a^{m\cdot n}\)

1b) \(\left(-2\right)^{3000}=2^{3000}\)

\(\left(-3\right)^{2000}=3^{2000}\)

\(\Rightarrow2^{3000}=\left(2^3\right)^{1000}\)

\(\Rightarrow3^{2000}=\left(3^2\right)^{1000}\)

\(2^3< 3^2\)

\(\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)

11 tháng 8 2015

(-2)3000 = 23000 = (23)1000 = 81000 và (-3)2000 = 32000 = (32)1000 = 91000

=> (-2)3000 < (-3)2000

1.Cho A=\(\dfrac{n+1}{n-2}\)

a)Tìm n Z để A là phân số

Để A là phân số thì n+1;n-2 ∈​ Z ; n-2 khác 0

<=> n ∈​ Z; n >2

Vậy A là phân số <=> n ∈​ Z; n>2

b)Tìm nZ để AZ

A ∈​ Z <=> n+1 chia hết cho n-2

<=>n-2+3 chia hết cho n-2

<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)

<=>n-2 ∈​ Ư(3)={1;-1;3;-3}

<=>n ∈​ {3;1;5;-1}

Vậy để A Z thì n ∈​ {3;1;5;-1}

c)Tìm NZ để A lớn nhất

2.Cho B=\(\dfrac{3n+2}{4n+3}\)

Chứng minh B tối giản

1c) Tìm n∈Z để A lớn nhất:

Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)

=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất

<=>n-2 nhỏ nhất; n-2>0; n-2∈Z

<=>n-2=1

<=>n=3

Vậy A lớn nhất <=> n-3

8 tháng 1 2018

Bài 1: Em tham khảo tại đây nhé.

Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath

7 tháng 12 2023

Bài 1:

a; (n + 4) \(⋮\) ( n - 1)  đk n ≠ 1

 n - 1 + 5  ⋮ n - 1

            5  ⋮ n - 1

n - 1     \(\in\) Ư(5) = {-5; -1; 1; 5}

\(\in\) { -4; 0; 2; 6}

 

7 tháng 12 2023

Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1

          n2 + 2n + 1 - 4 ⋮ n + 1

          (n + 1)2      -  4 ⋮ n + 1

                                4 ⋮ n + 1

           n + 1  \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}

           n  \(\in\)  {-5; -3; -2; 0; 1; 3}

           

20 tháng 6 2017

Mình ko biết sory

6 tháng 8 2017

nhìn mà ko muốn nghĩ luôn

16 tháng 5 2019

#)Giải :

Bài 1 :

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow N< 1-\frac{1}{100}\)

\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)

\(\Rightarrow N< \frac{3}{4}\)

       #~Will~be~Pens~#

16 tháng 5 2019

Bài 1:

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\)

\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Bài 2:

a) Để A là phân số \(\Leftrightarrow n-2\ne0\)

                                \(\Leftrightarrow n\ne2\)

Vậy \(n\ne2\)thì A là phân số .

b) Để A là số nguyên 

\(\Leftrightarrow n+1⋮n-2\)

\(\Leftrightarrow n-2+3⋮n-2\)

mà \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Tự tìm n 

Bài 3:

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow P< Q\)