Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc của xuồng khi xuôi dòng là \(\frac{60}{2}=30\)( km/h )
Vận tốc của xuồng khi ngược dòng là \(\frac{60}{4}=15\)( km/h )
Vận tốc của xuồng khi nước yên lặng là:
\(\left(30+15\right):2=22,5\)( km/h )
Vận tốc của dòng nước là:
\(30-22,5=7,5\)( km/h )
Sau mỗi lần gặp nhau thì cả hai người đã chạy được một quãng đường đúng bằng một vòng đua. Vậy 3 lần gặp nhau thì cả hai người chạy được 3 vòng đua. Mà hai người xuất phát cùng một lúc tại cùng một điểm rồi lại dừng lại tại đúng điểm xuất phát nên mỗi người chạy được một số nguyên vòng đua.
Mà 3 = 1 + 2 và anh chạy nhanh hơn em nên anh chạy được 2 vòng đua và em chạy được 2 vòng đua.
Vậy sau 3 lần gặp nhau ưnh chạy được quãng đường là:
900 x 3 = 2700 (m)
Một vòng đua dài là: 2700 : 2 = 1350 (m)
Vận tốc của em là: 1350 : 9 = 150 (m/phút)
Vận tốc của anh là: 2700 : 9 = 300 (m/phút)
Đáp số: Anh: 300 m/phút
Em: 150 m/phút
Kí hiệu: P là chu vi đường tròn
+) Do A và B đối tâm ( Tức AB là đường kính của đường tròn) nên sau lần gặp đầu tiên, Tổng quãng đường mà A và B đi được là nửa đường tròn
Gọi t1 là thời gian B đến C => t1 = \(\frac{\frac{P}{2}}{v_A+v_B}=\frac{P}{2\left(v_A+v_B\right)}\)(1)
+) Tính từ lần gặp đầu tiên đến lần gặp thứ hai, Tổng quãng đường mà A và B đi được là cả đường tròn đó
Gọi t2 là thời gian B đi từ C đến D ( tức là tính từ lúc họ gặp nhau lần 1 đến lần gặp thứ 2) => t2 = \(\frac{P}{v_A+v_B}\)(2)
Từ (1)(2) => t2 = 2.t1
Do vận tốc của B không đổi nên quãng đường B đi trong thời gian t2 gấp 2 lần quãng đường B đi trong thời gian t1
=> CD gấp 2 lần BC Mà BC = 100 m
=> CD = 200 m
Ta lại có: Lần thứ hai gặp nhau A còn 60 m nữa thì hoàn tất 1 vòng nên AD = 60 m
=> AC = 200 - 60 = 140 m
=> AB = AC + CB = 140 + 100 = 240 m
=> Chu vi đường tròn là 2.AB = 2.240 = 480 m
ngu thế 20 mét chứ mấy
Giải đầy đủ hộ cái