K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

a)

Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).

Đặt ab = 10a + b và abc = 100a + 10b + c.

Theo đề bài, ta có phương trình:

(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.

Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.

Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:

11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.

Vậy, c là một số chia hết cho 11.

b)

Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).

Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.

NV
21 tháng 11 2019

\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)

\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)

\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)

Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41

\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)

\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)

Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99

\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)

\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)

\(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)

\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)

Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)

21 tháng 11 2019

Giúp em nhanh lên với ạ

de thui nhung mk 

phai đi hoc đây 

chuc bn hco gioi!

nhae$

Ko có tên

27 tháng 10 2016

11 ban nhe

27 tháng 10 2016

ý đàu tiên:

ta có:    \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9

27 tháng 10 2016

ý thứ 2 đề bài phải là trừ chứ bạn

nếu là trừ thì giải như sau:

\(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)chia hết cho 99

23 tháng 10 2015

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

31 tháng 7 2017

A, ab + bc chia het cho 11

Ta có : 10 a +b +10b +a

          =11a +11b

          =11 (a+b) chia het cho 11

B, abc - cba chia het cho 99

Ta có :( 100a +b +c ) - ( 100c +b+a )

          =99a - 99c

          =99 (a-b) chia het cho 99

31 tháng 7 2017

xin loi nhung mik lam cau B hinh nhu sai roi

6 tháng 8 2016

Gọi 4 số liên tiếp là k

Ta có : k + (k + 1) + (k + 2) + (k + 3)

    = k + k + 1 + k + 2 + k + 3

    = 4k + 1 + 2 + 3

    = 4k + 6

    = 4k + 4 + 2

    = 4 . (k + 1) + 2

Vì 4(k + 1) chia hết cho 4

    2 không chia hết cho 4

=> 4 ( k+1) + 2 không chia hết cho 4

=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4.

6 tháng 8 2016

Gọi 4 số liên tiếp là k

Ta có : k + (k + 1) + (k + 2) + (k + 3)

    = k + k + 1 + k + 2 + k + 3

    = 4k + 1 + 2 + 3

    = 4k + 6

    = 4k + 4 + 2

    = 4 . (k + 1) + 2

Vì 4(k + 1) chia hết cho 4

    2 không chia hết cho 4

=> 4 ( k+1) + 2 không chia hết cho 4

=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4