Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
*Theo tính chất của cấp số cộng , ta có x+ z = 2y.
Kết hợp với giả thiết, x+ y + z = 21, ta suy ra 3y = 21 nên y = 7.
* Gọi d là công sai của cấp số cộng thì x = y − d = 7 − d và z = y + d = 7 + d .
Sau khi thêm các số 2 ; 3 ; 9 vào ba số x ; y ; z ta được ba số là x+ 2 ; y + 3 ; z + 9 hay
9- d ; 10 ; 16+ d.
* Theo tính chất của cấp số nhân, ta có
9 − d 16 + d = 10 2 ⇔ d 2 + 7 d − 44 = 0
Giải phương trình ta được d= -11 hoặc d= 4.
Với d = -11 ; cấp số cộng 18 ; 7 ; - 4. Lúc này F = 389.
Với d= 4, cấp số cộng 3 ; 7 ; 11. Lúc này F = 179.
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
Theo giả thiết ta có : \(\cot A+\cot C=2\cot B\)
\(\Leftrightarrow\frac{\sin\left(A+C\right)}{\sin A\sin C}=\frac{2\cos B}{\sin B}\)
\(\Leftrightarrow\sin^2B=2\sin B\sin C\cos B=\left[\cos\left(A-C\right)-\cos\left(A+C\right)\right]\cos B\)
\(\Leftrightarrow\sin^2B=\cos\left(A-C\right)\cos B-\cos\left(A+C\right)\cos B=-\cos\left(A-C\right)\cos\left(A+C\right)+\cos^2B\)
\(\Leftrightarrow\sin^2B=-\frac{1}{2}\left(\cos2A+\cos2C\right)+1-\sin^2B=-\frac{1}{2}\left(1-2\sin^2A+1-2\sin^2C\right)+1-\sin^2B\)
\(\Rightarrow2\sin^2B=\sin^2A+\sin^2C\Leftrightarrow2b^2=a^2+c^2\)
Vậy chứng tỏ \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng
Chọn A.
Phương pháp:
Ba số x, y, z lập thành một cấp số cộng
⇔ x + z - 2 y
Và số x, y, z lập thành một cấp số nhân ⇔ x z = y 2
Cách giải
Do 3 số x, y, z lập thành một cấp số cộng và có tổng bằng 21 nên ta có
x + z = 2 y x + y + z = 21
⇔ x + z = 14 y = 7
⇔ x = 14 - z y = 7 ( 1 )
Nếu lần lượt thêm các số 2; 3; 9 vào ba số đó (theo thứ tự của cấp số cộng)
thì được ba số lập thành một cấp số nhân nên ta có
( x + 2 ) ( z + 9 ) = ( y + 3 ) 2 ( 2 )
Thay (1) vào (2) ta có:
( 14 - z + 2 ) ( z + 9 ) = ( 7 + 3 ) 2
⇔ z 2 - 7 z - 44 = 0
⇔ z = 11 z = - 4
z = 11 ⇒ z = 14 - 11 = 3
⇒ F = x 2 + y 2 + z 2 = 179
z = - 4 ⇒ x = 14 - ( - 4 ) = 18
⇒ F = x 2 + y 2 + z 2 = 389