Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét modulo $3$ cho $n$ thôi . Ở đây mình xét cụ thể TH $n=3k$. TH \(n=3k+1,3k+2\) ta hoàn toàn làm tương tự
TH1: \(n=3k\)
Ta có :
\(11^3\equiv 1\pmod 7\Rightarrow 11^n=11^{3k}\equiv 1\pmod 7\Rightarrow 11^{n+2}\equiv 11^2\equiv 2\pmod 7\)
\(12^6\equiv 1\pmod 7\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod 7\Rightarrow 12^{2n+1}\equiv 12\pmod 7\)
\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 14\equiv 0\pmod 7\) $(1)$
Lại có:
\(11^3\equiv 1\pmod {19}\Rightarrow 11^n=11^{3k}\equiv 1\pmod {19}\Rightarrow 11^{n+2}\equiv 7\pmod {19}\)
\(12^6\equiv 1\pmod {19}\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod {19}\Rightarrow 12^{2n+1}\equiv 12\pmod {19}\)
\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 19\equiv 0\pmod {19}\) $(2)$
Từ \((1),(2)\) kết hợp với \((7,19)=1\) suy ra \(11^{n+2}+12^{2n+1}\vdots (7.19=133)\) (đpcm)
11n+2+122n+1=121*11n+12*144n
=(133-12)*11n+12*144n=133*11n+(144n-11n)*12
ta có 133*11n\(⋮\)133,(144n-11n)*12\(⋮\)(144-11)
vậy 11n+2+122n+1\(⋮\)133(đpcm)
a)ta có S=5+52+53+...+52004 =(5+52)+(53+54)+...+(52003+52004)
S=5.(1+5)+53.(1+5)+...+52003.(1+5)
S=5.6+53.6+..+52003+6
S=6.(5+53+...+52003)
Vì 6 chia hết cho 6
=> S chia hết cho 6
b)S=5.(1+5+52)+...+598.(1+5+52)
S= 5.31+...+598.31
S=31.(5+...+598)
vì 31 chia hết cho 31
=> S chia hết cho 31
c)S=5.(1+5+52+53)+...+597.(1+5+52+53)
S=5.156+...+597.156
S= 156.(5+...+597)
vì 156 chia hết cho 156
=> S chia hết cho 156
\(S=5+5^2+5^3+...+5^{2004}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{2003}\right)\)
\(=6\left(5+5^3+...+5^{2003}\right)\)
Vậy S chia hết cho 6.
\(S=5\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5+...+5^{2002}\right)\)
\(=31\left(5+...+5^{2002}\right)\)
Vậy S chia hết cho 31.
\(S=5\left(1+5+5^2+5^3\right)+...+5^{2001}\left(1+5+5^2+5^3\right)\)
\(=\left(1+5+5^2+5^3\right)\left(5+...+5^{2001}\right)\)
\(=156\left(5+...+5^{2001}\right)\)
Vậy S chia hết cho 156.
Lời giải:
Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ
Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$
$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ
Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$
Ta có đpcm
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
B = 62n +1 + 5n+5 = 62n . 6 + 5n . 55
= 36n .6 + 5n . 3125
= 36n .(31 - 25) + 5n . (3100 + 25)
= 36n . 31 - 36n . 25 + 5n . 3100 + 5n . 25
Ta thấy: 36n . 31 chia hết cho 31
5n . 3100 chia hết cho 31
=> - 36n . 25 + 5n .25 chia hết cho 31
hay 25 .( - 36n + 5n) chia hết cho 31
Ta có:
-36n +5n = -5n +( -31n) + 5n
= -31n chia hết cho 31
=> 25 .( - 36n + 5n) chia hết cho 31
hay
36n . 31 - 36n . 25 + 5n . 3100 + 5n . 25 chia hết cho 31
Vậy B = 62n +1 + 5n+5 chia hết cho 31