Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
\(a,A=27^5\)và \(B=243^3\)
Ta xét :
\(A=27^5=\left(3^3\right)^5=3^{15}\)
\(B=243^3=\left(3^5\right)^3=3^{15}\)
Mà \(3^{15}=3^{15}\)
\(\Rightarrow A=B\)
\(b,A=2^{300}\)và \(B=3^{200}\)
Ta xét :
\(A=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(B=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(9^{100}>8^{100}\)
\(\Rightarrow B>A\)
a)\(27^5=3^{3^5}=3^{15}\)
\(243^3=3^{5^3}=3^{15}\)
Vậy\(27^5=243^3\)
b)\(2^{300}=2^{\left(3\cdot100\right)}=2^{3^{100}}=8^{100}\)
\(3^{200}=3^{\left(2\cdot100\right)}=3^{2^{100}}=9^{100}\)
Vậy\(2^{300}< 3^{200}\)
a) Ta có: 27^5 = (3^3)^5 = 3^15
243^3 = ( 3^5)^3 = 3^15
=> 27^5 = 243^3
B CO 2^300= (2^3)^100 =8^100 3^200 =(3^2)^100 =9^100 vi 9^100 >8^100 nen 2^300 <3^200 ngu the bai nay ma ko lam dc oc cho
a) Ta có :
\(\left(27\right)^5=\left(3^3\right)^5=3^{15}\)
\(\left(243\right)^3=\left(3^5\right)^3=3^{15}\)
Vậy 275 = 2433
b) Ta có :
\(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
Vì 8100 < 9100 nên 2300 < 3200
B1
a) Ta có 92 = 34 b) 14.734=2.7.714
273 = 39 =2.735
=> 92 < 273 => 735 < 14.734
B2
a) 2x+5=37 b)32.22+64=6x-2
2x=37-5=32=25 36+64+2=6x
=>x=5 102:6 =7=x
c)2x.2x+1 < 512 => 2x+x+1 < 29
=>2x+1<9
=>2x<8
=>x<4
=>x thuộc {0;1;2;3}
Bài 1 :
n \(\in\) {3;4;5}
Bài 2 :
a) A < B
b) 2300 = 4150
Bài 3 :
x \(\in\) {-1; 0 ;1}
\(2^{300}=\left(2^3\right)^{100}< \left(3^2\right)^{100}=3^{200}\)
\(9^{20}=3^{40}>3^{39}=27^{13}\)
Trả lời:
a) 3200 và 2300
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
mà \(9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
Vậy 3200 > 2300
tôi kok bik
a,A=275 và B = 24333
Ta có
275=(33)5=315
2433=(35)3=315
Vì 315 = 315=>275=2433
Vậy A=B
b,A=2300 và B=3300
Vì 2300<3300=>A<B
k mik nhé