Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Khả Vy Quách - Toán lớp 8 - Học toán với OnlineMath
Gọi số cần tìm là ab (a,b∈N, 0<a<10, 0≤b<10), theo bài ra:
ab.135=m2(m∈N)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.
- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5
- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7
Thử lại thấy a=1 là được. Vậy số cần tìm là 15
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
- Nếu m2 dạng 4k
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
- Nếu m2 dạng 4k+1
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
trong tương tự đó
2x +1 là số lẻ nên (2x+1)2 là số chính phương lẻ
120 < (2x+1)2 < 200 => (2x+1)2 = 121 ; 169
+) (2x+1)2 = 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6
+) (2x+1)2 = 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7
Vậy....
nswfhceqohvewoi