K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Bài 1:

Xét tam giác vuông ABD tại D. Theo định lý Pi-ta-go, ta có:

BD2+AD2=AB2

=>225+AD2=289(cm)

=>AD2=64(cm)

=>AD=8(cm)

Suy ra CD=AC-AD=17-8=9(cm)

Lại xét tam giác BCD vuông tại D. Theo định lý Pi-ta-go ta có:

BD2+CD2=BC2

=>225+81=BC2(cm)

=>BC2=306(cm)

=>BC=\(\sqrt{306}\left(cm\right)\)

a: \(AB^2-BH^2=AB^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

hay \(AB^2+CH^2=AC^2+BH^2\)

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

A B C H 8cm 32cm ??? Chỉ mag TC minh họa 

AD định lí Py ta go

\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)

\(\Rightarrow AB=AH^2+64\)

Thực hiện tiếp vs AC 

3 tháng 2 2019

-tự vẽ hình

a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:

BH2+AH2=AB2

=> AH2=AB2-BH2(1)

Áp dụng định lý pytago vào tam giác vuông AHC ta có: 

AH2+HC2=AC2

=> AH2=AC2-HC2(2)

Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)

b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC

Áp dụng định lý pytago vào tam giác vuông EAF ta có: 

AE2+AF2=EF2

Áp dụng định lý pytago vào tam giác vuông ABC ta có: 

AB2+AC2=BC2

Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2

=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC

c) nghĩ chưa/ko ra >: 

-bn nào giỏi giải hộ =.=