Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét tam giác vuông ABD tại D. Theo định lý Pi-ta-go, ta có:
BD2+AD2=AB2
=>225+AD2=289(cm)
=>AD2=64(cm)
=>AD=8(cm)
Suy ra CD=AC-AD=17-8=9(cm)
Lại xét tam giác BCD vuông tại D. Theo định lý Pi-ta-go ta có:
BD2+CD2=BC2
=>225+81=BC2(cm)
=>BC2=306(cm)
=>BC=\(\sqrt{306}\left(cm\right)\)
a: \(AB^2-BH^2=AB^2\)
\(AC^2-CH^2=AH^2\)
Do đó: \(AB^2-BH^2=AC^2-CH^2\)
hay \(AB^2+CH^2=AC^2+BH^2\)
c: AH=4,8cm
BH=3,6cm
CH=6,4cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Chỉ mag TC minh họa
AD định lí Py ta go
\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)
\(\Rightarrow AB=AH^2+64\)
Thực hiện tiếp vs AC
-tự vẽ hình
a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:
BH2+AH2=AB2
=> AH2=AB2-BH2(1)
Áp dụng định lý pytago vào tam giác vuông AHC ta có:
AH2+HC2=AC2
=> AH2=AC2-HC2(2)
Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)
b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC
Áp dụng định lý pytago vào tam giác vuông EAF ta có:
AE2+AF2=EF2
Áp dụng định lý pytago vào tam giác vuông ABC ta có:
AB2+AC2=BC2
Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2
=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC
c) nghĩ chưa/ko ra >:
-bn nào giỏi giải hộ =.=