K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

co ai giup minh hk 

20 tháng 7 2015

a = 3 ; b = 2 ; c = 7 

Ta có : 

3 . 2 + 1 = 7 chia hết cho 7

2 . 7 + 1 = 15 chia hết cho 3

7 . 3 +1 = 22 chia hết cho 2

 

21 tháng 7 2015

bài này khó ................................................................

21 tháng 7 2015

ba số đó là 1 < a < b < c.ta có

            ab + 1 chia hết cho c, bc + 1 chia hết cho a, ca + 1 chia hết cho b

Từ đó suy ra (ab+1)(bc+1)(ca+1) chia hết cho abc

Suy ra  ab + bc + ca +1 chia hết cho abc

Tức là ab + bc + ca + 1 = kabc  với k là số nguyên dương.

=>   1/a + 1/b +1/c + 1/abc = k

Vì 1 < a < b < c nên VT < 1/2 + 1/3 + 1/4 + 1/24 < 2 suy ra k chỉ có thể là 1.

Nếu a ³ 3 thì b ³ 4, c ³ 5 và ta có VT £ 1/3 + 1/4 + 1/5 + 1/60 < 1 không thể là số nguyên. Vậy a chỉ có thể là 2. Nếu b ³ 4 thì c ³ 5 và ta có VT < 1/2 + 1/4 + 1/5 + 1/40 < 1. Vậy b chỉ có thể là 3. Thay vào phương trình, ta được 1/2 + 1/3 + 1/c + 1/6c = 1 => c = 7. Vậy có bộ ba số duy nhất thoả mãn đề bài là (2, 3, 7).            

con ko biết thư có lm đúng ko nữa nên nếu lm đúng thi olm tick cho thư 1 cái đi

27 tháng 7 2015

Kết luận (a ; b ; c) = (2 ; 3 ; 7)

Xem lời giải thì bấn vào dòng chữ màu xanh này Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

4 tháng 10 2015

Ta có : \(\frac{a}{2b}\) = \(\frac{b}{2c}\) = \(\frac{c}{2d}\) =\(\frac{d}{2a}\) =\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\) =\(\frac{1}{2}\) ( a,b,c,d>0)

\(\Rightarrow\) \(\frac{a}{2b}\) =\(\frac{1}{2}\) \(\Rightarrow\) a=b (1)                          \(\frac{c}{2d}\) =\(\frac{1}{2}\)\(\Rightarrow\)c=d (3)

       \(\frac{b}{2c}\) = \(\frac{1}{2}\) \(\Rightarrow\) b=c (2)                          \(\frac{d}{2a}\)=\(\frac{1}{2}\) \(\Rightarrow\) d=a(4) 

Từ (1) ,(2) ,(3) và (4) \(\Rightarrow\)a=b=c=d (5) 

Từ (5) ta thấy :a=b ,a=c ,a=d 

\(\Rightarrow\)\(\frac{2011a-200b}{c+d}\) + \(\frac{2011b-2010c}{a+d}\) +\(\frac{2011c-2010d}{a+b}\) + \(\frac{2011d-2010a}{b+c}\) 

\(\frac{2011a-2010b}{a+a}\) + \(\frac{2011a-2010a}{a+a}\) + \(\frac{2011a-2010a}{a+a}\) + \(\frac{2011a-2010a}{a+a}\)

 = \(\frac{2011a-2010a+2011a-2010a+2011a-2010a+2011a-2010a}{2a}\)

\(\frac{a+a+a+a}{2a}\)\(\frac{4a}{2a}\)=2 

KL : \(\frac{a}{2b}\) = \(\frac{b}{2c}\) = \(\frac{c}{2d}\) = \(\frac{d}{2a}\)(a,b,c,d>0) thì A =2