Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:
\(\left(x-3\right)\left(7-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow3\le x\le7\)
c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:
\(\left(2x-5\right)\left(2x+5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x>2\)
a)đk:`2x-4>=0`
`<=>2x>=4`
`<=>x>=2.`
b)đk:`3/(-2x+1)>=0`
Mà `3>0`
`=>-2x+1>=0`
`<=>1>=2x`
`<=>x<=1/2`
c)`đk:(-3x+5)/(-4)>=0`
`<=>(3x-5)/4>=0`
`<=>3x-5>=0`
`<=>3x>=5`
`<=>x>=5/3`
d)`đk:-5(-2x+6)>=0`
`<=>-2x+6<=0`
`<=>2x-6>=0`
`<=>2x>=6`
`<=>x>=3`
e)`đk:(x^2+2)(x-3)>=0`
Mà `x^2+2>=2>0`
`<=>x-3>=0`
`<=>x>=3`
f)`đk:(x^2+5)/(-x+2)>=0`
Mà `x^2+5>=5>0`
`<=>-x+2>0`
`<=>-x>=-2`
`<=>x<=2`
a, ĐKXĐ : \(2x-4\ge0\)
\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)
Vậy ..
b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow-2x+1>0\)
\(\Leftrightarrow x< \dfrac{1}{2}\)
Vậy ..
c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)
\(\Leftrightarrow-3x+5\le0\)
\(\Leftrightarrow x\ge\dfrac{5}{3}\)
Vậy ...
d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)
\(\Leftrightarrow-2x+6\le0\)
\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)
Vậy ...
e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy ...
f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow-x+2>0\)
\(\Leftrightarrow x< 2\)
Vậy ...
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
1: ĐKXĐ: \(a>-2\)
2: ĐKXĐ: \(x\ne2\)
3: ĐKXĐ: \(a\in\varnothing\)
1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\)
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
Bài 1: Bạn đã post 1 lần
Bài 2:
\(C=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Áp dụng BĐT dạng $|a|-|b|\leq |a-b|(*)$ thì:
$C\leq |\sqrt{x-3}-1-(\sqrt{x-3}-2)|$ hay $C\leq 1$
Vậy $C_{\max}=1$
Mặt khác, vẫn áp dụng BĐT $(*)$:
\(|\sqrt{x-3}-1|=|(\sqrt{x-3}-2-(-1)|\geq |\sqrt{x-3}-2|-|-1|\)
\(=|\sqrt{x-3}-2|-1\Rightarrow C\geq -1\)
Vậy $C_{\min}=-1$
B1:
a. \(\sqrt{\dfrac{4}{2x+3}}\)được xác định khi:\(\dfrac{4}{2x+3}\ge0\Leftrightarrow2x+3>0\Leftrightarrow x>-\dfrac{3}{2}\)
b.\(\sqrt{x\left(x+2\right)}\text{ }\) được xác định khi :\(x\left(x+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-2\end{matrix}\right.\)
c.\(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định khi :\(\dfrac{2x-1}{2-x}\ge0\Leftrightarrow\dfrac{1}{2}\le x< 2\)
B2:
a.\(\sqrt{\left(\sqrt{3}-2\right)^2}=|\sqrt{3}-2|=2-\sqrt{3}\) ( vì \(\sqrt{3}< \sqrt{4}=2\))
b.\(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)(vì \(\sqrt{3}>\sqrt{1}=1\))
c.\(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=|\sqrt{5}-2|=\sqrt{5}-2\)(vì \(\sqrt{5}>\sqrt{4}=2\))
B3:
a.\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow|5-2x|+2x=5\) (1)
Nếu \(5-2x\le0\Leftrightarrow x\ge\dfrac{5}{2}\).Khi đó :
(1)\(\Leftrightarrow2x-5+2x=5\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)(thoả mãn đk)
Nếu \(5-2x>0\Leftrightarrow x< \dfrac{5}{2}\).Khi đó :
(1)\(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)(luôn đúng với mọi x )
kết hợp với điều kiện ta được :\(x< \dfrac{5}{2}\)
Vậy nghiệm của phương trình đã cho là \(x=\dfrac{5}{2}\) hoặc \(x< \dfrac{5}{2}\)
b.\(\sqrt{x^2+\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)
\(\Leftrightarrow|x+\dfrac{1}{4}|=\dfrac{1}{4}-x\) (2)
Nếu \(x+\dfrac{1}{4}\le0\Leftrightarrow x\le-\dfrac{1}{4}\).Khi đó :
(2)\(\Leftrightarrow-\left(x+\dfrac{1}{4}\right)=\dfrac{1}{4}-x\Leftrightarrow\dfrac{1}{4}-x=\dfrac{1}{4}-x\) (luôn đúng với mọi x)
kết hợp với điều kiện ta được :\(x\le-\dfrac{1}{4}\)
Nếu \(x+\dfrac{1}{4}>0\Leftrightarrow x>-\dfrac{1}{4}\).Khi đó :
(2)\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{1}{4}-x\Leftrightarrow2x=0\Leftrightarrow x=0\)(tmđk)
Vậy nghiêm của phương trình là \(x\le-\dfrac{1}{4}\) hoặc \(x=0\)
c.\(\sqrt{x-2\sqrt{x-1}}=2\) (đkxđ :\(x\ge1\))
\(\Leftrightarrow\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow|\sqrt{x-1}-1|=2\)
\(\Leftrightarrow\sqrt{x-1}-1=2ho\text{ặc}\sqrt{x-1}-1=-2\)
\(\Leftrightarrow\sqrt{x-1}=3ho\text{ặc}\sqrt{x-1}=-1\)(vô nghiệm )
\(\Leftrightarrow x=10\)(tmđk )
Vậy nghiệm của phương trình đã cho là \(x=10\)