Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
Bài 1:
a) Sửa đề \(x\left(x+y\right)-3y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3y\right)\)
b) \(x^2+2019x-xy-2019y\)
\(=x\left(x+2019\right)-y\left(x+2019\right)\)
\(=\left(x+2019\right)\left(x-y\right)\)
c) \(x^2-9y^2-4x+4\)
\(=\left(x^2-4x+4\right)-9y^2\)
\(=\left(x-2\right)^2-\left(3y\right)^2\)
\(=\left(x-2-3y\right)\left(x-2+3y\right)\)
d) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
Bài 2:
a) \(\left(6x^3y^3-27xy^2\right):\left(3x^2y\right)-2xy^2\)
\(=6x^3y^3:3x^2y-27xy^2:3x^2y-2xy^2\)
\(=2xy^2-\dfrac{9y}{x}-2xy^2\)
\(=-\dfrac{9y}{x}\)
b) \(\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}+\dfrac{3x+2}{4-x^2}\)
\(=\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}-\dfrac{3x+2}{x^2-4}\)
\(=\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(1-2x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x+2\right)+\left(1-2x\right)\left(x-2\right)-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x+4+x-2-2x^2+4x-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x}{x+2}\)
Bài 3:
a) \(3x\left(2x-3\right)-x\left(6x+4\right)=7-12x\)
\(\Rightarrow6x^2-9x-6x^2-4x=7-12x\)
\(\Rightarrow-13x=7-12x\)
\(\Rightarrow-13x+12x-7=0\)
\(\Rightarrow-x-7=0\)
\(\Rightarrow-x=7\)
\(\Rightarrow x=-7\)
b) \(3\left(x-5\right)-2x^2+10x=0\)
\(\Rightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)