Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử tích trên lẻ. Khi đó:
$a+b, b+c, c+d, d+e, e+a$ lẻ
$\Rightarrow (a+b)+(b+c)+(c+d)+(d+e)+(e+a)$ lẻ (tổng của 5 số lẻ là 1 số lẻ)
$\Rightarrow 2(a+b+c+d+e)$ lẻ (vô lý)
Do đó điều giả sử là sai. Tức là tích $(a+b)(b+c)(c+d)(d+e)(e+a)$ chẵn.
\(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\\ \Rightarrow x=5\left(B\right)\\ B\left(8\right)=\left\{0;8;16;24;32;...\right\}\\ \Rightarrow x=24\left(B\right)\)
Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)
\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2
\(\Rightarrow a+b+c+d+e\)chia hết cho 2
Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )
\(\Rightarrow\)a+b+c+d+e là hợp số
Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.
em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi.
em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .
a^2+b^2+c^2+d^2+e^2 chia hết cho 2
* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0
*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn
như vậy a+b+c+d+e cũng là một số chắn
mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2 vậy a+b+c+d+e=2k với k khác 1 => dpcm.
( ở đây em chỉ cần khác 2 loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)
Từ giả thiết ta dễ có \(a+b+c+d+e⋮60\Rightarrow4a,5c⋮60\Rightarrow a⋮15;c⋮12\)
\(\Rightarrow a\ge15;c\ge12\)
Ta có phép biến đổi sau:
\(3\left(a+b+c+d+e\right)=3a+4b+5c\)
\(\Rightarrow3\left(d+e\right)=b+2c\ge15+2\cdot19\Rightarrow d+e\ge13\)
Đẳng thức xảy ra tại b=15; c=12 => a=2;\(d\le13;e\le13\Rightarrow a=20\) là giá trị lớn nhất cần tìm