Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC
BN=AB.BCAC+BC .tương tự suy ra CM=AC.BCAB+BC
giả sử AB≥AC⇒BN≥CMtheo kết quả vừa tính được
có AB≥AC⇒^B≤^C⇔{
^B1≤^C1 |
^B2≤^C2 |
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23
mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN
⇒{
BN≥CM |
BN≤CM |
⇒BN=CM⇒AB=AC⇒tam giác ABC cân
trường hợp AB≤AC làm tương tự
C1: Áp dụng hệ thức cosin vào tam giác ABC có:
\(\frac{AC}{sinB}=\frac{AN}{sinC}\)
\(\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(tự tính)
\(\Leftrightarrow AB^2=\frac{AC^2}{2}=AC\cdot AM\)
Từ đó: CM: tam giác ABM đồng dạng ACB
Suy ra: AMB=45 độ
Mng tự vẽ hình hí ^_^
Với lại là mình k gõ dấu góc đc nên mình ghi tắt là g nha....
Chứng minh:
a) BD// CE?
Vì BD⊥d,
CE⊥d
=>BD//CE ( tính chất 1 )
b) ΔADB=ΔAEC?
Xét 2 Δvuông: ΔADB và ΔAEC:
AB = AC (vì ΔABC cân tại A)
gDBA = gECA [(vì gABC+ gDBA= gB và
gACB+ gECA= gC mà
gABC= gACB (vì ΔABC cân tại A)]
Suy ra: ΔADB= ΔAEC (ch_gn) (đpcm)
c) BD+ CE= DE?
Vì ΔADB= ΔAEC (câu b)
=>BD=AE
CE=AD
Ta có: BD+ CE= AE+AD= DE
Vậy: BD+ CE= DE (đpcm)
Bạn làm đúng rồi
@Bảo
#Cafe
TL:
Đúng rồi nhé
~H~T