Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2S=3^{31}-1=3^{28}.3^3-1=\left(...1\right).27-1=\left(.....7\right)-1=\left(...6\right)\)
\(\Rightarrow S=\left(...3\right)\)
Tận cùng bằng 3 nhé e
3^0 có tận cùng là 1.
3^1 có tận cùng là 3.
3^2 có tận cùng là 9.
3^3 có tận cùng là 7.
3^4 có tận cùng là 1.
................................
3S = ( 3^1+3^2+3^3+......+3^31 )
3S-S = ( 3^1+3^2+3^3+......+3^31 ) - ( 3^0+3^1+3^2+......+3^30 )
2S = 2^31-1
2^31 có tận cùng là 1. ( theo như công thức đã nêu trên )
=> 2S có tận cùng là 0.
2S-S = 2S : 2
=> S có tận cùng là 5 vì ....0 : 2 bằng 5.
\(\frac{-3}{-9}\)+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{26}{14}\)
=+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{13}{7}\)
=\(\frac{1}{3}\)+\(\frac{1}{-3}\)+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=0+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=\(\frac{21}{7}\)
=3
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{4}-\frac{1}{12}\)
\(B=\frac{1}{6}\)
7B=7+7^2+7^3+...+7^2022
7B-B=(7+7^2+7^3+...+7^2022)-(1 + 7 + 72 + ... + 72021)
6B=7^2022-1
B=(7^2022-1)/6
Cảm ơn bạn!