K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 1 2022

a) \(A=1.2+2.3+3.4+...+999.1000\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+999.1000.\left(1001-998\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+999.1000.1001-998.999.1000\)

\(=999.1000.1001\)

\(A=\frac{999.1000.1001}{3}\)

b) \(B=1.3+3.5+5.7+...+999.1001\)

\(6B=1.3.6+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+999.1001.\left(1003-997\right)\)

\(=1.3.6+3.5.7-1.3.5+5.7.9-3.5.7+...+999.1001.1003-997.999.1003\)

\(=999.1001.1003+1.3\)

\(B=\frac{999.1001.1003+1.3}{6}\)

13 tháng 12 2015

a,Có số số hạng là:

(1001-1)+1=1001(số)

Tổng là:

(1001+1) x 1001:2=501501

b,Có số số hạng là:

(999-1) :2+1=500(số)

Tổng là:

(999+1) x 500:2=250000

c,tương tự câu b

tick nha tí nữa thi xong Anh cấp trương

 

13 tháng 12 2015

a)1001001

b)500000

c)501000

28 tháng 12 2021

đáp án là 5000

14 tháng 1 2017

506521

3 tháng 3 2021

506521 chúc bạn học tốt

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:
$A=[(-1)+5]+[(-9)+13]+....+[(-41)+45]$

$=4+4+4+....+4$
Số lần xuất hiện của 4 là: $[(45-1):4+1]:2=6$

$A=4\times 6=24$

-------------------------

$B=(1-2-3+4)+(5-6-7+8)+....+(997-998-999+1000)$
$=0+0+.....+0=0$

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

17 tháng 10 2021

\(a,S_3=-2-2-...-2\)

Tổng có \(\left[\left(2003-1\right):2+1\right]:2=501\left(số.hạng\right)\)

\(\Rightarrow S_3=501\cdot\left(-2\right)=-1002\)

\(b,S_4=\left(-1001+1001\right)+\left(-1000+1000\right)+...+\left(-1+1\right)+1002\\ S_4=1002\)

17 tháng 10 2021

a: \(S_3=1+\left(-3\right)+5+\left(-7\right)+...+2001+\left(-2003\right)\)

=(-2)+(-2)+...+(-2)

=-2004

4 tháng 12 2023

C = 1 + (-3) + 5 + (-7) +...+ 2001 + (-2003)

C= (1 - 2003) + (2001 - 3) + (5 - 1999) + (1997 - 7) +...+ (1001 - 1003)

C= -2002 + 1998 - 1994 + 1990 +....-2

C= (-4) + (-4) +....+ (-4) - 2 (250 cặp (-4) )

C= 250 x (-4) - 2

C= -1000 - 2 = -1002

4 tháng 12 2023

D = (-1001) + (-1000) + (-999) +...+ 1001 + 1002

D= (1001 - 1001) + (1000 - 1000) +...+ (1-1) + 0 + 1002

D= 0 + 0 +... + 0 + 0 + 1002

D= 1002