Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
n="1" Ta thay n=1 thì 1+1/3*1-2
1+1=2 (1)
3*1-2=1
1+1/3*1-2=2/1=2
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}
Làm câu b trước, câu a đánh máy mệt lắm
n-1 chia hết cho n+5. n+5 chia hết cho n-1
Suy ra 2 số này là 2 số đối nhau khác 0
2 số đối nhau có tổng =0
(n+5)+(n-1)=0
n+5+n-1=0
2n+4=0
2n=-4
n=-2
a. 3n - 21 chia hết cho n - 5
=> 3n - 15 - 6 chia hết cho n - 5
=> 3.(n - 5) - 6 chia hết cho n - 5
Mà 3.(n - 5) chia hết cho n - 5
=> 6 chia hết cho n - 5
=> n - 5 thuộc Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
=> n thuộc {-1; 2; 3; 4; 6; 7; 8; 11}.
n. Gọi 2 số đó là x và y.
Ta có: x.y = x - y
=> x.y - (x - y) = 0
=> x.y - x + y = 0
=> xy - x + y - 1 = -1
=> x.(y-1) + (y-1) = -1
=> (y-1).(x+1) = -1
Lập bảng:
Vậy các cặp (x;y) thỏa là: (0;0); (-2;2).