Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=12n
b=12m
UCLN(a;b)=12
Ta có:
12m+12n=120
12.(m+n)=120
m+n =120:12
m+n=10
Vì giá trị của m và n như nhau nên ta giả sử m>n
ta có bảng sau
m 7 3 9 1 a 84 36 108 12
n 3 7 1 9 b 36 84 12 108
Vậy các số a,b cần tìm là:
(108;12);(84;36);(36;84);(12;108)
Do ƯCLN(a,b) = 12
=> a = 12 × a'; b = 12 × b' (a';b')=1
Ta có:
a + b = 120
12 × a' + 12 × b' = 120
12 × (a' + b') = 120
a' + b' = 120 : 12
a' + b' = 10
Giả sử a > b => a' > b' mà (a';b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3
+ Với a' = 9; b' = 1 => a = 108; b = 12
+ Với a' = 7; b' = 3 => a = 84; b = 36
Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)
ƯCLN(a,b)=34=>a chia hết cho 34;b chia hết cho 34
ta có a=m.34;b=n.34(m,n là số tư nhiên)
=>a.b=34.m.34.n=6936
m.n.1156 =6936
m.n =6936:1156
m.n =6=1.6=6.1=2.3=3.2
vậy:(m,n):(1;6),(6;1),(2;3),(3;2)
do 72= 322.233
nếu ít nhất trong 2 số a , b có 1 số chia hết cho 2
giả sử a chia hết cho 2 =>b=42-a cũng chia hết cho 2
=> cả a và b đều chia hết cho 2
vì vậy tương tự ta cũng có a,b chi hết cho 3
=>a và b chia hết cho 6
ta thấy 42=36+6=30+12=18+24(là tổng 2 số chia hết cho 6)
trong các số trên chỉ có số 18 và 24 thỏa mãn
=>a=18;b=24
Ta có \(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\)
\(\RightarrowƯCLN\left(a,b\right)=2940:210=14\)
\(\Rightarrow a=14m;b=14n\)( với m,n khác 0 )
Thay \(a=14m;b=14n\)vào \(a.b=2940\)ta có
\(14m.14n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=15\)
\(\Rightarrow m.n=1.15=3.5\)
+ Với m = 1 ; n = 15 \(\Rightarrow a=14;b=210\)
+ với m = 15 ; n =1 \(\Rightarrow a=210;b=14\)
+ Với m = 3 ; n = 5 \(\Rightarrow a=42;b=70\)
+ Với m = 5 ; n = 3 \(\Rightarrow a=70;b=42\)
\(ƯCLN\left(a,b\right)=15\Leftrightarrow a=15m;b=15n;\left(m,n\ne0\right)\)
\(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)=300.15=4500\)
\(\Rightarrow15m.15n=4500\)
\(\Rightarrow225m.n=4500\)
\(\Rightarrow m.n=20\)
\(\Rightarrow m.n=1.20=2.10=4.5\)
+ Với \(m=1;n=20\Rightarrow a=15;b=300\)
+ Với \(m=20;n=1\Rightarrow a=300;b=15\)
+ Với \(m=2;n=10\Rightarrow a=30;b=150\)
+ Với \(m=10;n=2\Rightarrow a=150;b=30\)
+ Với \(m=4;n=5\Rightarrow a=60;b=75\)
+ Với \(m=5;n=4\Rightarrow a=75;b=60\)
a) Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
=> ƯCLN(a,b) . 210 = 2940
=>ƯCLN(a,b) = 2940 : 210
=> ƯCLN(a,b) = 14
mà a . b = 2940 (1)
Lại có : ƯCLN(a,b) = 14
=> \(\hept{\begin{cases}a=14m\\b=14n\end{cases}}\left(m\ne n;m,n\inℕ\right)\)(2)
Thay (2) vào (1) ta có :
\(14m.14n=2940\)
\(\Rightarrow14.14.m.n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=2940:196=15\)
\(\Rightarrow m.n=1.15=3.5\)
Lạp bảng xét các trường hợp :
\(m\) | \(3\) | \(5\) | \(1\) | \(15\) |
\(n\) | \(5\) | \(3\) | \(15\) | \(1\) |
\(a\) | \(42\) | \(60\) | \(14\) | \(210\) |
\(b\) | \(60\) | \(42\) | \(210\) | \(14\) |
Vậy các cặp (a,b) thỏa mãn là : \(\left(42;60\right);\left(60;42\right);\left(14;210\right);\left(210;42\right)\)
a) ƯCLN(a,b)=25
=>a=25m, b=25n trong đó m>n và ƯCLN(a,b)=1
Ta có: a+b=450
=>25m+25n = 450
=>25(m+n) = 450
=>m+n=18
Vì Ư(18) = {1;2;3;6;9;18}, m+n=18 và m>n nên ta có bản sau:
m | 18 | 9 |
n | 0 | 9 |
a | 450 | 225 |
b | 0 | 225 |
Các câu còn lại bạn cũng làm tương tự
Chỉ cần thay m và n bằng sử dụng WCLN là đc
Có gì không hiểu thì nhắn tin cho mình