Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì n thuộc ước của 5 nên: \(n-1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(n\) | \(0\) | \(2\) | \(-2\) | \(4\) | \(-4\) | \(6\) | \(-14\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............
gọi 1/41+1/42+1/43+...+1/79+1/80 là A
ta có:1/41>1/60,1/42>1/60,1/43>1/60,...,1/60=1/60
=>1/41+1/42+1/43+...+1/60>1/60
1/61>1/80,..................................,1/80=1/80
=>1/61+1/62+............+1/80>1/80
=>1/41+1/42+1/43+...+1/79+1/80>1/60+1/80
lại có 7/12=1/4+1/3
1/60.20=1/3 và 1/80.20=1/4
=>1/41+1/42+1/43+...+1/79+1/80>1/3+1/4
=>1/41+1/42+1/43+...+1/79+1/80>7/12
a) Có \(8^3=512,9^3=729,10^3=1000\).
Suy ra \(\hept{\begin{cases}\left(18-3x\right)^3=9^3=729\\\overline{729}=\overline{7ab}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}18-3x=9\\a=2,b=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=3\\a=2,b=9\end{cases}}\).
b) các bội của 775 có 5 chữ số là: 10075; 10850; 11625; 12400.....
Suy ra \(\overline{1ab5c}=10850\). Vậy c = 5, a = 0, b = 8.
c) Tổng các chữ số của a là:
\(1+2+3+4+....+50+51\) \(=\frac{\left(51+1\right).51}{2}=1326\).
Do 1326 chia hết cho 3 nên a chia hết cho 3 hay a là hợp số.
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
a) Ta có \(x-5\inƯ\left(19\right)=\left\{\mp1;\mp19\right\}\)
Có bảng sau:
Vậy \(x\in\left\{6;4;24;14\right\}\)
a. x thuộc Z => x-5 thuộc Z
19 chia hết cho x-5 => x-5 thuộc tập cộng trừ 1; cộng trừ 19
kẻ bảng => x = 6; 4; 24; -14
b. Không, vì 45x + 10y = 5(9x+2y) chia hết cho 5
Mà 2011; 2012 đều không chia hết cho 5
=> đpcm