K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Ta thấy:  \(\left(a-b+c\right)^2\ge0\) với mọi a, b, c

<=> a+ b2 + c2 - 2ab - 2bc + 2ac \(\ge\) 0

<=> a+ b2 + c2  \(\ge\)  2ab + 2bc - 2ac

<=> a+ b2 + c2  \(\ge\)  2(ab + bc - ac) (ĐPCM)

5 tháng 7 2018


Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu


 

5 tháng 7 2018

a, a2+b2+c2 >= ab+bc+ca

<=>a2+b2+c2-ab-bc-ca >= 0

<=>2(a2+b2+c2-ab-bc-ca) >= 0

<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0

<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

b, a2+b2+1 >= ab+a+b

<=>a2+b2+1-ab-a-b >= 0

<=>2(a2+b2+1-ab-a-b) >= 0

<=>2a2+2b2+2-2ab-2a-2b >= 0

<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0

<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)

Vậy...

c, a2+b2+c2+3 >= 2(a+b+c)

<=>a2+b2+c2+3-2a-2b-2c >= 0

<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0

<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)

Vậy...

d, a2+b2+c2 >= 2(ab+bc-ca)

<=>a2+b2+c2-2ab-2bc+2ca >= 0

<=>(a-b-c)2 >= 0 (luôn đúng)

Dấu "=" xảy ra khi a=b=c

Vậy...

e,ta có:  \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)

Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)

Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)

Dấu "=" xảy ra khi a = b

18 tháng 7 2018

1/ = ab-ac-ab-bc+ac-bc

    = -2bc

2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2

    = a^3 +b^3 +c^3 -3abc

Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.

18 tháng 7 2018

ai đó giúp mình đi :(

30 tháng 1 2017

bài này c-s sẽ đỡ lo ngược hơn, nhưng trên có ghi am-gm thì xài am-gm thôi ( t cx hay bị ngược dấu vs lại dg muốn ngủ nên xét bài hộ)

Bài giải__

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{a^2+b^2+2c^2}\)

\(=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le1+\frac{ab}{\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\). Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\\\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+b^2}\right)\end{cases}}\)

Cộng theo vế 3 BĐT ta dc: 

\(VT\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

30 tháng 1 2017

Làm ctv mà hong bít 

3 tháng 2 2020

\(a^3+b^3\ge\frac{\left(a+b\right)^3}{4}\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Thiếu a,b ko âm phải 

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !