Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x=3y=4z <=> x/3=y/4=z/2
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{72}{9}=8\)
Bài này t nhớ nãy t làm rồi , rán quay lại tham khảo
\(2x=3y=4z\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
\(\frac{z}{2}=2\Rightarrow z=2.2=4\)
Vậy x=6 ; y=8 và z=4
Bài này cũng tạm được :
theo đề bài ta có :
\(2x=3y=4z\)
\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)và \(x+y+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)
\(\Rightarrow\)\(x=2.3=6\)
\(\Rightarrow\)\(y=2.4=8\)
\(\Rightarrow\)\(z=2.2=4\)
Vậy bạn tự kết luận
Ấn vô đây đăng kí xem ít nhất 5 lượt sau đó nt nhận tik
Tìm x,y,z : |x - 2| + (y + 3)2 + |z + 6| = 0
Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\\\left|z+6\right|\ge0\end{cases}\forall x,y,z\Rightarrow\left|x-2\right|+\left(y+3\right)^2+\left|z+6\right|\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+3\right)^2=0\\\left|z+6\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\\z=-6\end{cases}}}\)
Ta co : |x-2| ; (y+3)^2 ; |z+6| đều >= 0
=> |x-2|+(y+3)^2+|z+6| >= 0
Dấu "=" xảy ra <=> x-2=0 ; y+3=0 ; z+6=0 <=> x=2 ; y=-3 ; z=-6
Vậy x=2 ; y=-3 ; z=-6
Tk mk nha
\(x+y+100=0\)
\(\Leftrightarrow\)\(x+y=-100\)(1)
\(x-y=0\) (2)
Từ (1) và (2) suy ra:
\(\left(x+y\right)+\left(x-y\right)=-100\)
\(\Leftrightarrow\)\(2x=-100\)
\(\Leftrightarrow\)\(x=-100\div2=-50\)
\(\Rightarrow\)\(y=-100+50=-50\)
Vậy \(x=y=-50\)
Theo bài ra ta cs
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)
T lại cs
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{z}{8}\left(2\right)\)
Từ (1);(2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{2x+3y-4z}{2.15+3.10-4.8}=\frac{56}{28}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=16\end{cases}}}\)
\(2x=3y;4y=5z\) => \(8x=12y;12y=15z\)
=> \(\frac{8x}{120}=\frac{12y}{120}=\frac{15z}{120}\)=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}=\frac{2x+3y-4z}{30+30-32}=\frac{56}{28}\)
=> \(\frac{2x}{30}=2=>2x=60=>x=30\)
\(\frac{3y}{30}=2=>3y=60=>y=20\)
\(\frac{4z}{32}=2=>4z=64=>z=16\)
Ta có: 2x=3y-2x
=> 3y=4x
Lại có: 2x=4z-3x
=>4z=5x
=>\(\frac{y}{4}\)= \(\frac{x}{3}\) và \(\frac{x}{4}\) = \(\frac{z}{5}\)
=> \(\frac{x}{12}\)= \(\frac{y}{16}\)= \(\frac{z}{15}\)= \(\frac{x-y+z}{12-16-15}\)= \(\frac{44}{11}\)= 4
=> x=48
y=64
z=60