Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B > 1
=> B = \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}=A\)
Vậy A < B
\(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Nhận thấy: \(\frac{2}{2^{10}-3}>\frac{2}{2^{10}-1}\) do 210-3 < 210-1
Vậy: \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}+1}{2^{10}-1}\)
Bạn viết thêm số thứ 3 ở đầu dãy thì mới biết quy luật của dãy để tính chứ. Viết 2 số thế kia ai tính được :D
Bạn chỉ viết 2 số ở đầu dãy thì ko thể biết được quy luật của dãy. Bạn cần cho thêm 1 số nữa mới giải được chi tiết nhé!
Gọi số cam của ba giỏ lần lượt là a, b, c (a, b, c là số tự nhiên nhỏ hơn 172)
Theo bài ra ta có : \(a+b+c=172\)
và \(\frac{2}{5}a+\frac{1}{4}b+\frac{5}{12}c=64\)
\(\Leftrightarrow\frac{24a+15b+25c}{60}=64\)
\(\Leftrightarrow15\left(a+b+c\right)+9a+10c=3840\)
\(\Leftrightarrow15.172+9a+10c=9840\)
\(\Leftrightarrow9a+10c=1260\)
Ta lại có \(\frac{1}{5}\)số cam của giỏ thứ 1 và \(\frac{2}{9}\)số cam của giỏ thứ 3 bằng:
\(\frac{a}{5}+\frac{2}{9}c=\frac{9a+10c}{45}=28\) (quả)
ĐS: 28 quả.
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(\frac{1}{2}\)của \(\frac{1}{2}\)là : \(\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\)
\(\frac{1}{4}:\frac{1}{2}\)\(=\frac{1}{4}\cdot\frac{2}{1}=\frac{1}{2}\)
Vậy bạn An nói đúng