Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x\right|+\frac{1}{4}=\frac{1}{5}\)
\(\left|x\right|=\frac{1}{5}-\frac{1}{4}\)
\(\left|x\right|=\frac{-1}{20}\)(vô lý vì \(\left|x\right|\ge0\)với mọi x . Mà \(\frac{-1}{20}\)>0 )
Vậy không tồn tại x
b)\(\left|x+2\right|-\frac{1}{12}=\frac{1}{4}\)
\(\left|x+2\right|=\frac{1}{4}+\frac{1}{12}\)
\(\left|x+2\right|=\frac{1}{3}\)
\(\Rightarrow x+2\varepsilon\left\{\frac{1}{3};\frac{-1}{3}\right\}\)
+)\(x+2=\frac{1}{3}\Rightarrow x=\frac{-5}{3}\) +)\(x+2=\frac{-1}{3}\Rightarrow x=\frac{-7}{3}\)
Vậy \(x=\frac{-5}{3}\)hoặc \(x=\frac{-7}{3}\)
c)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\left|x+5\right|=\frac{-43}{42}\)( vô lý vì \(\left|x+5\right|\ge0\)với mọi x , mà \(\frac{-43}{42}< 0\))
Vậy không tồn tại x
d)\(\left|x+\frac{5}{6}\right|=\left|\frac{1}{5}-\frac{2}{3}\right|+\frac{-3}{4}\)
\(\left|x+\frac{5}{6}\right|=\frac{7}{15}+\frac{-3}{4}\)
\(\left|x+\frac{5}{6}\right|=\frac{-17}{60}\)( Vô lý vì \(\left|x+\frac{5}{6}\right|\ge0\)với mọi x mà \(\frac{-17}{60}< 0\))
Vậy không tồn tại x
a) \(\frac{3}{4}+\frac{1}{4}.x=\frac{1}{2}+\frac{1}{2}x\)
\(\Rightarrow3.\frac{1}{4}+\frac{1}{4}.x=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{1}{4}.\left(x+3\right)=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{x+1}{x+3}=\frac{1}{4}:\frac{1}{2}=\frac{1}{2}\)\(\Rightarrow\left(x+1\right).2=x+3\Rightarrow2x+2=x+3\)
\(\Rightarrow2x-x=3-2\Rightarrow x=1\)
vay x=1
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
a) Quy đồng lên đi.
b) \(\frac{x+2}{0.5}=\frac{2x+1}{2}\Leftrightarrow\frac{x+2}{\left(\frac{1}{2}\right)}=\frac{2x+1}{2}\)
\(\Leftrightarrow2x+4=\frac{2x+1}{2}\Leftrightarrow4x+8=2x+1\)
\(\Leftrightarrow x=-\frac{7}{2}\)
c) \(\Leftrightarrow\left|x+\frac{1}{5}\right|=6\). VỚi x >= -1/5 thì:
\(x+\frac{1}{5}=6\Leftrightarrow x=\frac{29}{5}\left(TM\right)\)
Với x < -1/5 thì \(-x-\frac{1}{5}=6\Leftrightarrow x=-\frac{31}{5}\left(TM\right)\)
d) TƯơng tự ý a, quy đồng lên thôi (mẫu chung là 24 thì phải)
c) \(\left|x+\frac{1}{5}\right|-4=2\)
=> \(\left|x+\frac{1}{5}\right|=2+4\)
=> \(\left|x+\frac{1}{5}\right|=6\)
=> \(\left\{{}\begin{matrix}x+\frac{1}{5}=6\\x+\frac{1}{5}=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=6-\frac{1}{5}\\x=\left(-6\right)-\frac{1}{5}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{29}{5}\\x=-\frac{31}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{29}{5};-\frac{31}{5}\right\}\).
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)
\(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)
\(\frac{2}{5}-x=-3\)
\(x=\frac{2}{5}-\left(-3\right)\)
\(x=\frac{2}{5}+3\)
\(x=\frac{3}{5}-\frac{15}{5}\)
\(x=-\frac{12}{5}\)
Vay \(x=-\frac{12}{5}\)
b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)
\(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)
\(-3+\frac{3}{x}=\frac{-25}{12}\)
\(\frac{3}{x}=\frac{-25}{12}+3\)
\(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)
\(\frac{3}{x}=\frac{5}{6}\)
\(\frac{18}{6x}=\frac{5x}{6x}\)
Đèn dây , bạn tự làm tiếp nhé , de rồi chứ
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a)
\(\Rightarrow\left|x-\frac{2}{5}\right|=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{2}{5}=1\\x-\frac{2}{5}=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{3}{5}\\x=-\frac{3}{5}\end{array}\right.\)
b)
\(\Rightarrow\frac{3}{2}\left|\frac{1}{4}-x\right|=-\frac{1}{6}\)
Mặt khác vì \(\left|\frac{1}{4}-x\right|\ge0\)
\(\Rightarrow\frac{3}{2}.\left|\frac{1}{4}-x\right|\ge0\)
=> \(x\in\varnothing\)
c)
\(\Rightarrow\frac{4}{3}-\frac{5}{3}.\left|x-\frac{1}{3}\right|=-1\)
\(\Rightarrow\frac{5}{3}.\left|x-\frac{1}{3}\right|=\frac{7}{3}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=\frac{7}{5}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{1}{3}=\frac{7}{5}\\x-\frac{1}{3}=-\frac{7}{5}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{26}{15}\\x-\frac{16}{15}\end{array}\right.\)