K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

trừ 2 về đi bạn , cả 2 câu đều k khó đâu

31 tháng 1 2016

a)x=144 , y=36

b)x=9 , y=1 

cần lời giải thì nói mình

 

11 tháng 1 2016

lại tiếp à -_- mệt tim thật

tí nữa nhé

23 tháng 1 2016

\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\Leftrightarrow\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2=\frac{1}{2}+\frac{2xy}{xy+x+y+1}\)

\(\Leftrightarrow\left(\frac{x^2+x+y^2+y}{xy+x+y+1}\right)^2=\frac{1}{2}+\frac{2xy}{4xy}\)

\(\Leftrightarrow\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)}{4xy}\right)^2=1\)

\(\Leftrightarrow\left(\frac{\left(3xy-1\right)^2+xy-1}{4xy}\right)^2=1\)

Đặt s=x+y;p=xy (s2\(\ge\)4p)

Suy ra: \(\left(\frac{\left(3p-1\right)^2+p-1}{4p}\right)^2=1\)

=>\(\frac{9p^2-5p}{4p}=1\)hoặc \(\frac{9p^2-5p}{4p}=-1\)

<=>p=1 hoặc p=1/9

Với p=1 thì: 3=s+1=>s=2 (thỏa dk)

=>nghiệm của hpt là nghiệm của pt: X2-2X+1=0

=>x=1

Vậy hpt có 1 nghiệm là: (1;1)

Với p=1/9=>s=-2/3 (thỏa dk)

Giải như trên òi kết luận

23 tháng 1 2016

bài đó làm rùi nhưng quên rùi

24 tháng 1 2016

em mới lớp 6 thui :( 

24 tháng 1 2016

dẽ lắm đi mà hỏi thầy hoặc cô giáo

5 tháng 2 2016

Sao khó vậy? Mình còn chưa học.

5 tháng 2 2016

Cậu cộng cả 2 pt zao

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)